Grace: Graph Self-Distillation and Completion to Mitigate Degree-Related Biases Presenter: Hui Xu,

Joint work with: Liyao Xiang, Femke Huang, Yuting Weng, Ruijie Xu, Xinbing Wang, Chenghu Zhou

Shanghai Jiao Tong University

Background

• Extensive studies for Graph Neural Networks (GNNs) have arisen in recent years showing the great power of graph structure learning.

• Graph Neural Networks (GNNs) have already played a crucial role in node classification task.

Background

Degree-related Bias: The prediction accuracy of graph neural networks increases with the increase in node degrees on homophily graphs

This phenomenon significantly affects applications of GNNs in *recommendation systems*, *e-commerce services*, and *social networks*.

Normalized Number of Nodes

Graph data in the real world often follows the long-tailed distribution, where the majority of nodes belong to low-degree and isolated nodes.

Challenges for low-degree nodes:

- ✓ Challenge 1: insufficient neighborhood information
- ✓ Challenge 2: GNNs may overlook the learning of intrinsic features of low-degree nodes
 ✓ …

Degree-related bias can highly limit the node classification performance of GNNs on dataset following long-tail degree distribution !!!

Problem Definition

• We split the node set $\mathcal{V} = \bigcup_{i}^{deg_{max}} \mathcal{V}_{i}$ to a maximal deg_{max} groups and each \mathcal{V}_{i} refers to the set of nodes whose degrees are *i*. For $i = deg_{max}$, \mathcal{V}_{i} refers to the set of nodes whose degrees are no less than deg_{max}

• Given a graph $G = (\mathcal{V}, \mathcal{E}, \mathcal{X})$ and labels Y for the labeled set, we aim to learn a GNN-based model to *maintain overall classification performance* and achieve a *balanced performance* for all degree groups

Data Analysis

Question 1: Is the small number of neighbors for low-degree nodes the main reason for the degree-related bias?

Through experiments, we made two observations:

- ✓ the majority of misclassified low-degree nodes often have a very small proportion of same-class neighboring nodes.
- ✓ Low-degree nodes with a higher proportion of neighboring nodes belonging to the same class tend to be correctly classified.

^{*} Low-degree nodes with a green label, circled in red, do not have any neighboring green nodes of the same class and are also far away from all other green nodes.

Data Analysis

٠

Neighborhood Homophily Ratio (NHR):

$$NHR(v) = \frac{1}{|\mathcal{N}_v|} \sum_{u \in \mathcal{N}_v} \mathbb{1}(y_v = y_u)$$

where y_v is the label of node v, and $1(\cdot)$ is the indicator function.

• Discrepancy of Neighborhood Distribution

The aforementioned differences make it difficult for GNNs to effectively utilize the neighborhood distribution of low-degree nodes for accurate node classification.

Motivation 1: Increasing the NHR of low-degree nodes can help mitigate the degree-related bias in GNNs for node classification task.

Grace: Graph Self-Distillation and Completion to Mitigate Degree-Related Rinco **Data Analysis** w / \mathcal{N}_{v} Question 2: Can GNNs effectively utilize the node's own features for node classification in the case of insufficient neighborhood information? $w/o \mathcal{N}_{v}$ Random Drop Edge Graph Distillation ٠ • 1.0 Upper bound 0.9 0.75 **Ave. Micro-F1** Ave. Micro-F1 07 0.6 0.5 Lower bound Inherit degree-related bias 0.4 0.60 GCN GraphSAGE --- GLN Under 0.3 • GraphSAGE GLNN GAT --- MLP representation 0.55 0.2 10 15 20 25 **GNNs** 5 60 100 20 40 80 0 Degrees Drop Edge Ratio (%)

Motivation 2: To alleviate the degree-related bias in node classification tasks, we need to enhance the representation capability of nodes own features in GNNs

Proposed Framework

Proposed Framework

Graph Self-Distillation

• Aggregate layer

$$h_{v}^{(l)} = \sigma(\underbrace{h_{v}^{(l-1)} \cdot W_{1}^{(l)}}_{\text{ST}} + \underbrace{\text{MEAN}(\{h_{u}^{(l-1)} \cdot W_{2}^{(l)}, \forall u \in \mathcal{N}_{v}\})}_{\text{neighborhood transformation}}$$

• Objective function

Teacher

$$\mathcal{L}_{t} = \sum_{v \in \mathcal{V}_{train}} CE(z_{v}^{\text{GNN}}, y_{v}) + \lambda ||\Theta_{t}||_{2}^{2}$$

Student
$$\mathcal{L}_{s} = \gamma \sum_{v \in \mathcal{V}} KL(z_{v}^{\text{ST}}||z_{v}^{\text{GNN}}) + (1 - \gamma) \sum_{v \in \mathcal{V}_{train}} CE(z_{v}^{\text{ST}}, y_{v})$$

REMARK 1. Without the non-linear activation in Eq. 3, the selfdistillation guides the self-representation weights $\{W_1^{(l)}|l = 1, ..., L\}$ to learn a neighborhood translation of node features.

Joint Learning

$$\mathcal{L}_{SD} = \mathcal{L}_t + \mathcal{L}_s$$

Self-distillation does not introduce any additional parameters and inherits the efficiency of GraphSAGE.

Proposed Framework

Graph Completion

• Label construction

$$z_{v}^{\text{top2}} = \text{softmax}(\text{top2}(z_{v}^{\text{GNN}})), \forall v \in \mathcal{V}$$
$$y_{v,u}^{GC} = \begin{cases} 0, & \cos(z_{v}^{\text{top2}}, z_{u}^{\text{top2}}) < \eta, \\ 1, & u \in \mathcal{N}_{v}, \\ \text{not selected,} & otherwise, \end{cases}$$

• Objective function

$$\mathcal{L}_{GC} = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} CE(p(v), y_v^{GC})$$

<u>Avoid Error Propagation</u>

 $\mathcal{G}' = (\mathcal{V}, \mathcal{E}', X)$ $\hat{y}_v = \frac{1}{|\mathcal{N}'_v| + 1} \sum_{u \in \{v\} \cup \mathcal{N}'_v} z_v^{\text{GNN}}$

Reduce erroneous negative samples in the training data

Proposed Framework

Training Step

• We perform a two-stage training in Grace

Algorithm 1 GRACE

-										
In	put: Edge set \mathcal{E} , attribute matrix X, training labels Y_t , hyperpa-									
	rameters γ , η , k and K .									
Ou	tput: Classification results \hat{Y} .									
1:	# First stage of Training: Graph Self-Distillation.									
2:	Randomly initialize $\Theta = \{\Theta_s, \Theta_t\};$									
3:	while Θ not converged do									
4:	Calculate Z^{GNN} and Z^{ST} according to Eq.2 and Eq.3;									
5:	Compute \mathcal{L}_{SD} and update parameter Θ .									
6:	end while									
7:	7: # Second stage of Training: Graph Completion.									
	Randomly initialize θ of GNN Encoder;									
9:	Compute Z^{GNN} and construct Y^{GC} according to Eq. 10.									
on 10:	while θ not converged do									
11:	Compute Loss \mathcal{L}_{GC} and update parameter θ .									
12:	end while									
13:	# Inference stage: Label Propagation.									
14:	Complete $\overline{\mathcal{G}}$ to $\overline{\mathcal{G}}'$: for each non-isolated node v with degree									
on 🕨	no greater than K, link it with its top-k neighbors by $p(v)$.									
15:	Perform label propagation to acquire \hat{Y} via Eq. 12.									
16:	return Classification results \hat{Y}									

Experiments

• Datasets

- We evaluate Grace on six benchmark datasets:

Dataset	Nodes	Edges	Features	Classes
Cora	2,485	5,069	1,433	7
Citeseer	3,327	9,104	3703	6
Amazon-Photo	7,650	238,162	745	8
Amazon-Computers	13,752	491,722	767	10
Coauthor-CS	18,333	163,788	6,805	15
Coauthor-Physics	34,493	495,924	8,415	5

• Baselines

- General GNNs: GCN, GraphSAGE, GAT
- Enhanced GNNs: AKGNN, Order GNN
- Degree specific GNNs: Demo-Net
- Missing neighbors-aware GNNs: Tail-GCN, ColdBrew
- Biased gradient-aware GNNs: RawlsGCN

Experiments

- Metrics
 - We use micro-F1 score to evaluate the overall performance.
 - For degree group performance, we define the following metrics by the node degree:

 $\begin{aligned} \text{MicroF1}(k) = & \text{MicroF1}(\{u, \forall \text{node } u \text{ such that } d(u) = k\}), \\ & G.Mean = \mathbb{E}[\{\text{MicroF1}(k), \forall \text{node degree } k\}], \\ & G.bias = & \text{Std}(\{\text{MicroF1}(k), \forall \text{node degree } k\}), \end{aligned}$

Set $deg_{max} = 3$

Experiments

• Node classification performance of different methods on three different metrics

Method		Cora			Citeseer		I	Amazon-Photo	
Methoa	Micro-F1↑	G.Mean↑	G.Bias↓	Micro-F1↑	G.Mean↑	G.Bias↓	Micro-F1↑	G.Mean↑	G.Bias↓
GCN	78.74±1.65%	$80.53 \pm 2.52\%$	8.11±1.58%	$68.54 \pm 1.46\%$	$76.20 \pm 2.19\%$	$12.25 \pm 1.19\%$	$82.85 \pm 2.49\%$	84.41±2.28%	7.87±1.49%
GraphSAGE	$76.50 \pm 1.77\%$	$79.15 \pm 2.25\%$	$8.40 \pm 1.61\%$	$67.62 \pm 1.57\%$	$75.52 \pm 2.11\%$	$16.30 {\pm} 2.73\%$	87.56±1.85%	$87.99 \pm 1.87\%$	$8.84 \pm 1.95\%$
GAT	$78.30 \pm 2.15\%$	80.02±2.61%	8.05±1.89%	66.57±1.87%	74.97±2.56%	$12.47 \pm 1.42\%$	82.90±3.55%	83.75±3.45%	8.32±1.54%
AKGNN	79.45±1.47%	$82.13 {\pm} 1.87\%$	7.77±1.29%	68.16±1.60%	$77.32 \pm 1.83\%$	$12.65 \pm 0.88\%$	86.76±3.19%	87.29±3.19%	7.77±1.02%
Ordered GNN	$77.85 \pm 1.80\%$	$80.24 \pm 2.15\%$	$7.95 \pm 1.50\%$	65.77±1.67%	$74.26 \pm 2.17\%$	$13.66 \pm 1.53\%$	$88.18 \pm 1.92\%$	$\underline{88.90{\pm}1.87\%}$	$6.39 {\pm} 0.54\%$
Demo-Net	76.39±2.06%	78.52±2.47%	8.70±1.65%	65.07±2.27%	74.34±2.62%	13.31±1.29%	70.17±4.90%	69.39±5.29%	14.24±1.98%
Tail-GCN	77.21±1.91%	80.02±2.27%	$8.18 \pm 1.45\%$	65.97±2.45%	$76.18 {\pm} 2.20\%$	$13.54 \pm 1.41\%$	83.36±3.93%	84.15±3.77%	8.14±1.37%
ColdBrew-S	$55.46 \pm 2.13\%$	56.86±2.63%	9.58±2.76%	$54.04 \pm 2.13\%$	61.79±3.94%	13.01±2.76%	76.26±1.91%	77.66±1.92%	6.69±0.61%
ColdBrew-T	79.04±1.30%	80.41±1.66%	8.61±1.10%	68.04±1.51%	76.59±1.84%	$12.83 \pm 1.04\%$	86.70±1.09%	87.18±1.11%	$7.65 \pm 0.64\%$
RawlsGCN	75.67±2.04%	78.63±2.16%	8.76±1.37%	$67.02 \pm 1.99\%$	$76.18 {\pm} 2.50\%$	$12.56 \pm 1.42\%$	87.33±1.93%	87.75±2.00%	$6.13 \pm 0.44\%$
Grace	80.40±2.11%	81.59±2.23%	7.61±1.36%	69.24±2.14%	77.41±2.25%	12.97±1.43%	89.23±1.73%	89.75±1.75%	$5.96{\pm}0.52\%$

Method	Amazon-Computers			Coauthor-CS			Coauthor-Physics		
Method	Micro-F1↑	G.Mean↑	G.Bias↓	Micro-F1↑	G.Mean↑	G.Bias↓	Micro-F1↑	G.Mean↑	G.Bias↓
GCN	68.08±3.44%	69.48±3.30%	$10.12 \pm 1.70\%$	91.21±0.58%	91.47±1.26%	4.22±0.63%	93.23±0.91%	95.53±0.87%	$2.92 \pm 0.24\%$
GraphSAGE	76.81±2.45%	76.89±2.41%	$10.01 \pm 1.72\%$	91.72±0.63%	93.07±0.73%	3.73±0.33%	92.77±1.01%	95.22±0.90%	$3.16 {\pm} 0.25\%$
GAT	$73.26 \pm 4.70\%$	$74.17 \pm 4.39\%$	9.71±1.40%	$88.25 \pm 1.34\%$	$88.10 \pm 1.81\%$	$4.92 \pm 0.39\%$	$90.70 \pm 1.52\%$	93.17±1.70%	$3.40{\pm}0.50\%$
AKGNN	75.71±3.87%	75.84±3.92%	9.70±0.84%	88.85±0.76%	89.97±0.96%	4.77±0.56%	$92.29 \pm 1.17\%$	94.21±2.53%	$3.22 \pm 0.26\%$
Ordered GNN	76.99±2.69%	$77.12 \pm 2.60\%$	8.75±0.57%	92.44±0.58%	93.46±0.59%	$3.70 \pm 0.36\%$	$93.13 \pm 0.92\%$	$95.42 \pm 0.81\%$	$2.92{\pm}0.24\%$
Demo-Net	53.23±3.55%	50.60±3.73%	15.54±1.44%	89.22±0.89%	90.72±0.94%	5.11±0.48%	92.14±1.22%	95.07±0.86%	3.99±0.69%
Tail-GCN	73.34±4.47%	73.42±4.35%	9.47±1.08%	-	-	-	-	-	-
ColdBrew-S	63.39±3.24%	63.53±2.99%	7.27±0.66%	88.29±1.15%	$89.28 \pm 1.21\%$	$4.28 \pm 0.60\%$	$89.83 \pm 2.27\%$	92.93±1.90%	$3.73 {\pm} 0.59\%$
ColdBrew-T	70.52±1.68%	72.66±1.73%	9.07±0.63%	91.50±0.34%	93.05±0.42%	$4.02 \pm 0.33\%$	93.30±0.37%	95.13±0.26%	$3.29 {\pm} 0.15\%$
RawlsGCN	77.12±2.88%	$77.29 \pm 2.96\%$	9.05±0.67%	91.69±0.58%	92.89±0.49%	$3.70 \pm 0.26\%$	$93.08 {\pm} 0.71\%$	95.61±0.46%	$3.10{\pm}0.31\%$
GRACE	77.32±2.40%	$77.35{\pm}2.41\%$	7.73±0.71%	92.92±0.61%	93.97±0.57%	3.42±0.33%	93.67±0.60%	$95.89{\pm}0.43\%$	2.81±0.21%

Experiments

• Performance of all benchmarks on different degree thresholds

Dataset	Cora			Citeseer			Amazon-Photo		
K	1	5	10	1	5	10	1	5	10
GCN	$71.03 \pm 2.51\%$	78.69 ± 1.69%	$78.67 \pm 1.66\%$	$61.74 \pm 1.61\%$	$67.60 \pm 1.46\%$	$68.18 \pm 1.48\%$	$68.32 \pm 2.81\%$	$70.77 \pm 5.03\%$	$74.41 \pm 4.88\%$
GraphSAGE	$67.89 \pm 3.07\%$	$76.20 \pm 1.84\%$	$76.36 \pm 1.79\%$	$59.83 \pm 1.62\%$	$66.51 \pm 1.57\%$	$67.20 \pm 1.58\%$	$61.14 \pm 6.06\%$	$76.63 \pm 2.28\%$	$81.70 \pm 1.77\%$
GAT	$71.21 \pm 3.38\%$	$78.23 \pm 2.22\%$	$78.22 \pm 2.17\%$	$59.63 \pm 2.11\%$	$65.51 \pm 1.88\%$	$66.19 \pm 1.88\%$	$59.52 \pm 8.38\%$	$69.28 \pm 5.77\%$	$74.20 \pm 4.84\%$
AKGNN	$71.98 \pm 2.19\%$	$79.19 \pm 1.50\%$	$79.32 \pm 1.48\%$	$60.83 \pm 1.77\%$	$67.07 \pm 1.62\%$	$67.74 \pm 1.63\%$	$63.14 \pm 5.78\%$	$74.21 \pm 4.97\%$	$79.18 \pm 4.17\%$
Ordered GNN	$\overline{70.45 \pm 2.54\%}$	$77.67 \pm 1.83\%$	$77.74 \pm 1.83\%$	$59.28 \pm 1.82\%$	$64.72 \pm 1.70\%$	$65.36 \pm 1.69\%$	$70.05 \pm 3.17\%$	$79.03 \pm 2.09\%$	$82.82 \pm 1.89\%$
Demo-Net	$68.41 \pm 4.04\%$	$76.35 \pm 2.13\%$	$76.28 \pm 2.10\%$	$58.01 \pm 2.48\%$	$64.03 \pm 2.28\%$	$64.64 \pm 2.28\%$	$57.18 \pm 8.42\%$	$63.18 \pm 6.06\%$	$64.92 \pm 5.52\%$
Tail-GCN	$67.42 \pm 3.32\%$	$76.89 \pm 2.00\%$	$77.09 \pm 1.94\%$	$57.27 \pm 3.00\%$	$64.69 \pm 2.56\%$	$65.51 \pm 2.49\%$	$59.35 \pm 6.52\%$	$72.26 \pm 3.47\%$	$76.75 \pm 3.21\%$
ColdBrew-S	$51.31 \pm 2.98\%$	$55.07 \pm 2.28\%$	$55.43 \pm 2.19\%$	$49.65 \pm 2.15\%$	$53.20 \pm 2.06\%$	$53.72 \pm 2.09\%$	$61.35 \pm 2.97\%$	$67.89 \pm 2.52\%$	$70.81 \pm 2.12\%$
ColdBrew-T	$71.46 \pm 2.41\%$	$79.16 \pm 1.73\%$	$79.20 \pm 1.69\%$	$60.95 \pm 2.04\%$	$66.85 \pm 1.81\%$	$67.49 \pm 1.78\%$	$70.60 \pm 2.15\%$	$78.78 \pm 1.92\%$	$82.81 \pm 1.58\%$
RawlsGCN	$66.85 \pm 2.73\%$	$75.24 \pm 2.14\%$	$75.52 \pm 2.08\%$	$59.97 \pm 2.11\%$	$65.92 \pm 2.00\%$	$66.58 \pm 2.01\%$	$\overline{69.89 \pm 2.36\%}$	$78.32 \pm 1.89\%$	$82.45 \pm 1.71\%$
GRACE	$72.41\pm3.10\%$	$79.70\pm2.08\%$	$79.72\pm2.06\%$	$62.42 \pm 2.26\%$	$68.26 \pm 2.11\%$	$68.84\pm2.10\%$	$72.21 \pm 2.74\%$	$80.49 \pm 1.78\%$	$84.56 \pm 1.58\%$

Dataset	Amazon-Computers			Coauthor-CS			Coauthor-Physics		
К	1	5	10	1	5	10	1	5	10
GCN	38.07 ± 3.61%	$50.49 \pm 4.85\%$	55.95 ± 6.09%	$87.52 \pm 1.02\%$	90.62 ± 0.73%	90.11 ± 0.63%	87.51 ± 1.24%	90.26 ± 0.97%	91.19 ± 0.95%
GraphSAGE	$38.30 \pm 7.53\%$	$59.19 \pm 3.76\%$	$67.07 \pm 3.15\%$	$84.84 \pm 0.87\%$	$90.97 \pm 0.64\%$	$91.43 \pm 0.63\%$	$85.65 \pm 1.21\%$	$89.80 \pm 1.12\%$	$90.69 \pm 1.10\%$
GAT	$38.29 \pm 7.85\%$	$54.95 \pm 6.36\%$	$62.29 \pm 5.92\%$	$84.34 \pm 1.53\%$	$88.18 \pm 1.11\%$	$88.38 \pm 1.22\%$	$83.24 \pm 1.79\%$	$87.11 \pm 1.59\%$	$88.50 \pm 1.50\%$
AKGNN	$39.10 \pm 4.24\%$	$57.24 \pm 4.40\%$	$65.04 \pm 4.53\%$	$84.70 \pm 1.18\%$	$88.44 \pm 0.79\%$	$88.69 \pm 0.76\%$	$65.74 \pm 12.0\%$	$71.11 \pm 11.2\%$	$73.64 \pm 10.9\%$
Ordered GNN	$\underline{43.20\pm2.72\%}$	$60.95 \pm 2.88\%$	$68.01 \pm 2.81\%$	$86.42 \pm 1.17\%$	$92.00 \pm 0.66\%$	$\underline{92.24\pm0.61\%}$	$87.15 \pm 1.30\%$	$90.48 \pm 1.01\%$	$91.24 \pm 1.01\%$
Demo-Net	$32.85 \pm 5.42\%$	$42.10 \pm 4.86\%$	$45.96 \pm 4.49\%$	$80.50 \pm 1.88\%$	$88.77 \pm 1.06\%$	$89.50 \pm 1.49\%$	$81.80 \pm 2.70\%$	$88.00 \pm 1.29\%$	$89.50 \pm 1.49\%$
Tail-GCN	$36.75 \pm 5.30\%$	$55.79 \pm 4.17\%$	$63.36 \pm 4.11\%$	$80.50 \pm 1.88\%$	$88.77 \pm 1.06\%$	$89.50 \pm 1.49\%$	$81.80 \pm 2.70\%$	$88.00 \pm 1.29\%$	$89.50 \pm 1.49\%$
ColdBrew-S	$37.59 \pm 3.25\%$	$50.99 \pm 3.07\%$	$56.75 \pm 3.09\%$	$88.29\pm1.02\%$	$88.47 \pm 1.18\%$	$88.23 \pm 1.20\%$	$86.46 \pm 2.55\%$	$86.75 \pm 2.44\%$	$87.43 \pm 2.47\%$
ColdBrew-T	$41.65 \pm 2.96\%$	$62.05 \pm 3.42\%$	$70.05 \pm 3.08\%$	$88.18 \pm 4.11\%$	$91.28 \pm 0.42\%$	$91.67 \pm 0.38\%$	$88.52 \pm 0.41\%$	$91.28 \pm 0.52\%$	$92.08 \pm 0.46\%$
RawlsGCN	$42.36 \pm 3.22\%$	$59.56 \pm 3.62\%$	$67.07 \pm 3.60\%$	$\underline{89.17\pm1.09\%}$	$91.20 \pm 0.81\%$	$91.51 \pm 0.67\%$	$87.84\pm1.44\%$	$89.86\pm1.05\%$	$90.89 \pm 0.92\%$
GRACE	$48.22\pm3.99\%$	$63.68 \pm 3.72\%$	$70.88 \pm 3.52\%$	$89.21\pm1.03\%$	$92.87 \pm 0.77\%$	$93.08 \pm 0.70\%$	$89.13\pm0.60\%$	$91.51 \pm 0.77\%$	$92.20\pm0.69\%$

Experiments

• Performance of various GNNs with different drop- ping ratios on Cora (Left) and Coauthor-CS (Right) datasets.

• Percentage of low-NHR (<0.2) nodes of GraphSAGE's misclassified nodes on Cora (Left) and Coauthor-CS (Right) dataset.

Experiments

• Visualization of node representations learned by GraphSAGE (Left) and Grace (Right) on Cora dataset. Different colors denote different classes of nodes.

Conclusion

- We study the problem of degree-related bias on GNNs for long tailed degree distribution, and propose a new framework Grace to solve it
 - The graph self-distillation module is proposed to enhance the self-transformation part in GNNs
 - The graph completion module is proposed to improve the NHR of low-degree nodes
 - Directed completed edges and one-hop label propagation can avoid the error propagation and amplification
- Experiment results demonstrate the effectiveness of our model

Thank You! Q&A

