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l Extensive studies for Graph Neural Networks (GNNs) have arisen in recent years showing the great power of 
graph structure learning.

l Graph Neural Networks (GNNs) have already played a crucial role in node classification task.

Background
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Not known to
the model (unlabeled)

Machine Learning

Data Mining



Degree-related Bias: The prediction accuracy of graph neural
networks increases with the increase in node degrees on
homophily graphs
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Graph data in the real world often follows the long-tailed distribution, where 
the majority of nodes belong to low-degree and isolated nodes.

This phenomenon significantly affects applications of GNNs in 
recommendation systems, e-commerce services, and social networks.

Challenges for low-degree nodes: 

ü Challenge 1: insufficient neighborhood information
ü Challenge 2: GNNs may overlook the learning of intrinsic features of low-degree nodes
ü …

Degree-related bias can highly limit the node classification performance of 
GNNs on dataset following long-tail degree distribution !!!
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Problem Definition

• Given a graph 𝒢 = (𝒱, ℰ, 𝒳) and labels 𝑌 for the labeled set, we aim to learn a GNN-based model to maintain
overall classification performance and achieve a balanced performance for all degree groups

• We split the node set 𝒱 = ⋃!
"#$!"# 𝒱! to a maximal 𝑑𝑒𝑔%&' groups and each 𝒱! refers to the set of nodes whose 

degrees are 𝑖. For 𝑖 = 𝑑𝑒𝑔%&', 𝒱! refers to the set of nodes whose degrees are no less than 𝑑𝑒𝑔%&'

𝒱( 𝒱) 𝒱* 𝒱+

𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 ≥ 3

Set 𝑑𝑒𝑔$%& = 3
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Mitigate the 
degree-related bias
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Question 1: Is the small number of neighbors for low-degree nodes the main reason for the degree-related bias?

Data Analysis

Citeseer

Through experiments, we made two observations: 

ü the majority of misclassified low-degree nodes often 
have a very small proportion of same-class 
neighboring nodes.

ü Low-degree nodes with a higher proportion of 
neighboring nodes belonging to the same class tend to 
be correctly classified.

far away

∗ Low-degree nodes with a green label, circled in red, do not have any neighboring 
green nodes of the same class and are also far away from all other green nodes.
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Data Analysis

• Neighborhood Homophily Ratio (NHR):

• Discrepancy of Neighborhood Distribution

where 𝑦( is the label of node 𝑣, and 1(⋅) is the indicator function. 

… …
Low-degree Node High-degree Node

different

The aforementioned differences make it difficult for GNNs to effectively utilize 
the neighborhood distribution of low-degree nodes for accurate node classification.

Low NHR High NHR

Motivation 1: Increasing the NHR of low-degree nodes can help mitigate the degree-related bias in 
GNNs for node classification task.
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Data Analysis

Question 2: Can GNNs effectively utilize the node's own features for node 
classification in the case of insufficient neighborhood information?
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GNNs

• Random Drop Edge

❌

• Graph Distillation

Under
representation

Lower bound

Upper bound

Inherit degree-related bias

Motivation 2: To alleviate the degree-related bias in node classification tasks, we need to enhance 
the representation capability of nodes own features in GNNs
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Proposed Framework
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Proposed Framework

…

GNN
Encoder

…

!!"# ∈ ℝ$

!!"#$%
!&"#$% !'"#$%

top2-Softmax

…

$ ∈ %! Positive node

Negative node

Mask

≥ "

CE Loss
&(()

#$%	(⋅,⋅)

< "

(b) Graph Self-Distillation (GSD)

(c) Graph Completion (GC)(a) Our framework

!, ℰ

!

ℒ

Graph Self-Distillation

• Aggregate layer

• Objective function

Teacher

Student

Joint Learning

distillation

Self-distillation does not introduce any additional parameters and inherits the 
efficiency of GraphSAGE.
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Proposed Framework

Graph Completion

• Objective function
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• Label construction

Reduce erroneous negative samples in the training data

• Avoid Error Propagation
LD

directed
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Proposed Framework

Training Step 
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• We perform a two-stage training in Grace
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Experiments

• Datasets
⎯ We evaluate Grace on six benchmark datasets:

• Baselines
⎯ General GNNs:  GCN,  GraphSAGE,  GAT
⎯ Enhanced GNNs:  AKGNN,  Order GNN
⎯ Degree specific GNNs:  Demo-Net
⎯ Missing neighbors-aware GNNs: Tail-GCN, ColdBrew
⎯ Biased gradient-aware GNNs: RawlsGCN
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Experiments

• Metrics
⎯ We use micro-F1 score to evaluate the overall performance. 
⎯ For degree group performance, we define the following metrics by the node degree: 

𝒱( 𝒱) 𝒱* 𝒱+

𝑑 = 0 𝑑 = 1 𝑑 = 2 𝑑 ≥ 3

Set 𝑑𝑒𝑔$%& = 3
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Experiments

• Node classification performance of different methods on three different metrics 
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Experiments

• Performance of all benchmarks on different degree thresholds 
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Experiments

• Percentage of low-NHR (<0.2) nodes of GraphSAGE’s misclassified nodes on Cora (Left) and Coauthor-CS 
(Right) dataset. 

• Performance of various GNNs with different drop- ping ratios on Cora (Left) and Coauthor-CS (Right) datasets. 
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Experiments

• Visualization of node representations learned by GraphSAGE (Left) and Grace (Right) on Cora 
dataset. Different colors denote different classes of nodes. 
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Conclusion

• We study the problem of degree-related bias on GNNs for long tailed degree distribution, and 
propose a new framework Grace to solve it
⎯ The graph self-distillation module is proposed to enhance the self-transformation part in GNNs
⎯ The graph completion module is proposed to improve the NHR of low-degree nodes
⎯ Directed completed edges and one-hop label propagation can avoid the error propagation and 

amplification
• Experiment results demonstrate the effectiveness of our model
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