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Background

MIA threats, scenarios, existing works.
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Membership Inference Attack (MIA)

Attacker input: ° °

-
+ Atarget model (victim) W 5
« Atarget sample Training data Model M 1
Attacker output:
+ The predicted probability that ﬁ -+ W

the target sample belongs to Model M’

the training dataset of the Participated or not?

target model



MIAs against Discriminative Models
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MIAs against Generative Models

Assuming target M is a GAN, containing a generator G and a discriminator D

f—o—0

target samp target D D loss

M- —0 7

Optimized latent vec. target G Reconstruction Loss

Participated or not?




Defense against MIA on Generative Model is Hard

Features differed from discriminative models:
No confidence scores as ouput

Unknown downstream tasks

Goals of defense:
No reproduction or memorization of training data

Data utility reservation



Existing Solutions
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D, = built-in adversary to predict which
generator produces a syntheticsample

J. Chen, W. H. Wang, H. Gao, and X. Shi, “Par-gan: Improving the generalization of generative adversarial networks against membership inference attacks,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021, pp. 127-137.

S. Mukherijee, Y. Xu, A. Trivedi, and J. L. Ferres, “privgan: Protecting gans from membership inference attacks at low cost to utility,” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, pp. 142-163,
2021. [Online]. Available: https://doi.org/10.2478/ popets-2021-0041



Existing Solutions

DatalLens
Accessible by Adversary I Not Accessible by Adversary
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TopAgg: noisy gradient compression and aggregation

B. Wang, F. Wu, Y. Long, L. Rimanic, C. Zhang, and B. Li, “Datalens: Scalable privacy preserving training via gradient compression and aggregation,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 2146—2168.



Problems of Existing Solutions

Some works focus on the design of GAN architectures
E.g. PAR-GAN, privGAN

Shortcoming: complexity, computation overhead

Some use differential privacy
E.g. Datalens

Shortcoming: utility degradation

None has considered the strongest MIA, LIRA.



Preliminaries

The likelihood ratio attack, mixup training.



The Likelihood Ratio Attack (LIRA)
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Likelihood ratio ~ Implementation

HO: the target example is a member. LIRA replaces distributions of models
' with distributions of losses, denoted

H1: the target example is not a member.
I by Qin and Qout

Pr(MlMin)

Pr(M|Moyt) i i A(l) = Pprr((llllQQin))
out

A(M) =

e o e e e = e = - - - - —

LIRA focuses on the true positive rate (TPR) at low false positive rate (FPR) regime



The Likelihood Ratio Attack (LIRA)
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After attacking several target samples,
attackers can choose a relatively high

threshold to reach a low FPR

Here TPR=3/5, FPR = 1/4

Existing defenses all fail to reduce TPR at
low FPR
We target at this threat



Mixup Training

Mixup training regularizes the neural network to favor simple linear behavior in
between training examples

[1.0]




Methodology

Defense algorithm, analytical insights.



Intuition

member P non-member

Outliers:

easy to fit / inlier easy to fit / outlier 1. Significant influence to the target
bird
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model
2. Easy to be detected by MIA
attackers
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The figure above comes from the paper: N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2022, pp. 1519-1519.



Mixup Training

We use mixup to reduce the impact of
outliers, so that the model does not differ
greatly (in terms of loss) between
members and non-members

randomly sample (21, y1), (z2,y2) from D;
sample A\ ~ [(a, «);

Tmiz = AT1 + (1 — A)xa;
y1 = one_hot(y1);
Yo = one_hot(ys2);

Ymiz = )\yl + (]. — )\)yg;

/* generate fake samples */
sample z ~ P.;
fa'ke - G(‘Z? yTTL?,IE)
/* update D */
Lp = _D(mmima ymz’m) + D(fake: ymiz);
ED = 5'3 — lT‘D . VQDLD;
batch_done = batch _done + 1;
/* update G */
if batch_done mod n, == 0 then
Lg = —D(fa,ke, ym?'.:t);
9@ — 9(; — l?"g . VSGLG;
end



Analytical Insights

PDF of loss value of members is shifted right by mixup

-

Probability Density
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Fig. 1: Reconstruction Loss Distributions on CIFAR-10

Pr(l|Qin)

We will see how A = Pr(l|Qoue)

Probability Density
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Normalized Discriminator Loss

Fig. 2: Discriminator Loss Distributions on MIMIC-III

changes, intuitively and theoretically.



Analytical Insights
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Analytical Insights

Ratio A is reduced for targeted members.
A= Pr(llQin) ((l o .uout)z (l _ ,uin)2>
= o exp 5 — >
Pr(llQout) 2O-out 2O-in
X exp[(o-l%’l, _ Ogut )lz + z(ﬂino-gut _ .uouto-igl)l]

= exp [f(D]

Proposition 1:
With a probability approximately larger than 0.5, applying mixup to the model training
leads to a decrease in A for target members.

Proof: by discussing the sign of 62, — 62,;.



Analytical Insights

Conclusion: Mixup training lowers the upper bound of attack AUC.
Symbols:

P,, (or B,): Distribution of A of members (or non-members)

Q. (or Q,): Distribution of log A of members (or non-members)

= =logA

1 1
AUC S _EDTV(PITIIPTL)Z + DTV(Pm'PTL)-l_E

Lemma: Decreasing A for target members -> Upper bound of D, (Q,,, Q,,) decreases.

Proof: Q,,,, Q,, are Gaussians -> Dy, u. b. of D, , has CLOSED FORM about A A



Analytical Insights
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Other cases:

Experiments show distribution of = ! T : ;

resembles a Gaussian (nght flgure) Fig. 3: Distribution of = when n;_,,_ — Uf,”,t # 0.



Experiments

Privacy results and utility results.



Settings

Datasets

Images:

1. CelebA

2. CIFAR-10

Tables:
MIMIC-III

K|

MIAs Defenses

Baselines:
GAN-leaks (against G) 1. PAR-GAN
Logan (against D) 2. RelaxLoss
LIRA (both)

.l



Metrics

Utility:
Downstream classification accuracy
Frechet Inception Distance for images

Dimensional Wise Probability for tables

Privacy:
Area under ROC curve of MIA



Comparing Attacks
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Privacy Performance: ROC Curve
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Privacy Performance: Area under ROC Curve

TABLE I: Attack AUCROC on CIFAR-10.

Logan Ratio GAN-Leaks
0.5083

unprotected
mixup 0.5312
relaxLoss ST 5320 0.4197
PAR-GAN  0.6668 (.7398 0.5291

TABLE II: Attack AUCROC on CelebA

Logan Ratio GAN-Leaks

unprotected 0.8637 0.5317
mixup 0.6615 -
relaxLoss 0.7703  0.5857 -
PAR-GAN  0.6571 0.7781 -

TABLE III: Attack AUCROC on MIMIC-III

Logan Ratio GAN-Leaks

unprotected  0.5264  0.5913 0.5028
mixup 0.5269  0.5283 -
relaxLoss 0.5296  0.5175 -
PAR-GAN  0.5350 0.5015 -

Some GAN-leaks results are omitted

due to poor performance



Utility Performance on Images

TABLE IV: Downstream classification accuracy and FID on
Images datasets.

(a) CIFAR-10 (b) CelebA-Gender
Protection Acct FID | Protection Acct FID |
unprotected 0,49 | 4 unprotected 0,912 111,980
mixup Q4212 mixup 0.915) Q04.3760
relaxlLoss 0.385 102.955 relaxl.oss 0.836 07.746

PAR-GAN  0.404 199.053 PAR-GAN  0.876 157.724




Utility Performance on Tables
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Adaptive Attack

TABLE V: Adaptive attack AUCs against mixzup on CIFAR-

10. The original LIRA against non-protected target GAN has
an AUC of.6866

ref. models . : :
] mixup trained  naturally trained
query
mixed query 0.5264 < 0.6084 >
single query 0.5426 0.5303

TABLE VI: Adaptive attack AUCs against mixzup on CelebA.
The original LIRA against non-protected target GAN has an

AUC o€0.8637

ref. models : : .
mixup trained  naturally trained
query

mixed query 0.5975

single query 0.6701 0.6615

If the attacker knows mixup:
Mixup trained reference
model

If the attacker knows the co-
membership information:
Mixed query

The strongest one:

naturally trained reference
models + mixed samples for
co-membership query.

Mixup does provide a
significant privacy gain in
these cases.



Takeaways

Mixup training can reduce the likelihood ratio for target members.

Mixup training can lower the upper bound of the MIA attacker's AUC.
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