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Background

MIA threats, scenarios, existing works.
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Setup

Training dataset: Private data

Object to release: Trained model, or
synthetic data from the trained model

Threats: The model may memorize
training samples. Then attackers may
recover, or infer the private training
data from the released model or
synthetic data
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Membership Inference Attack (MIA)
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Training data Model M

Model M’

Attacker input: 

• A target model (victim)

• A target sample

Attacker output:

• The predicted probability that 

the target sample belongs to 

the training dataset of the 

target model
Participated or not?
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MIAs against Discriminative Models
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target M Confidence Scores

Participated or not?

target sample



S J T U

MIAs against Generative Models
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Assuming target M is a GAN, containing a generator G and a discriminator D

Optimized latent vec.

Participated or not?
target D D loss

target G Reconstruction Loss

target sample
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Defense against MIA on Generative Model is Hard

 Features  d i f fered f rom discr iminat ive  models:  
1 . No  c on f i denc e  s c o res  as  oupu t

2 . Unk nown downs t ream tas k s

 Goals  of  defense:
1 . No  rep roduc t i on  o r  memor i z a t i on  o f  t r a i n i ng  da ta

2 . Da ta  u t i l i t y  r es e rva t i on
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Existing Solutions

 Pr ivGAN
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 PAR-GAN

J. Chen, W. H. Wang, H. Gao, and X. Shi, “Par-gan: Improving the generalization of generative adversarial networks against membership inference attacks,” in Proceedings of the 27th ACM SIGKDD Conference 
on Knowledge Discovery & Data Mining, 2021, pp. 127–137.
S. Mukherjee, Y. Xu, A. Trivedi, and J. L. Ferres, “privgan: Protecting gans from membership inference attacks at low cost to utility,” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, pp. 142–163, 
2021. [Online]. Available: https://doi.org/10.2478/ popets-2021-0041
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Existing Solutions

 DataLens

B. Wang, F. Wu, Y. Long, L. Rimanic, C. Zhang, and B. Li, “Datalens: Scalable privacy preserving training via gradient compression and aggregation,” in Proceedings of the 2021 ACM SIGSAC Conference 
on Computer and Communications Security, 2021, pp. 2146–2168.
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Problems of Existing Solutions

 Some works  focus on the  des ign of  GAN archi tectures
• E .g .  PAR-GAN,  p r i vGAN

• Sho r t c om ing :  c omp lex i t y,  c ompu ta t i on  ove rhead

 Some use d i f ferent ia l  pr ivacy
• E .g .  Da ta l ens

• Sho r t c om ing :  u t i l i t y  deg rada t i on

None  has  c ons ide red  t he  s t r onges t  M IA ,  L IRA .  
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Preliminaries

The likelihood ratio attack, mixup training.
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The Likelihood Ratio Attack (LIRA)
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LIRA replaces distributions of models
with distributions of losses, denoted
by 𝑄𝑄𝑖𝑖𝑖𝑖 and 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜

Λ 𝑙𝑙 ≔
Pr(𝑙𝑙|𝑄𝑄𝑖𝑖𝑖𝑖)

Pr(𝑙𝑙|𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)

Implementation 

H0: the target example is a member.

H1: the target example is not a member.

Λ 𝑀𝑀 ≔
Pr(𝑀𝑀|𝑀𝑀𝑖𝑖𝑖𝑖)

Pr(𝑀𝑀|𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜)

Likelihood ratio

LIRA focuses on the true positive rate (TPR) at low false positive rate (FPR) regime
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The Likelihood Ratio Attack (LIRA)
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Λ
9.4
5.2
4.4
3.5
1.0
0.8
0.7
0.6
0.5

After attacking several target samples,

attackers can choose a relatively high 

threshold to reach a low FPR

Here TPR=3/5, FPR = 1/4

Existing defenses all fail to reduce TPR at

low FPR

We target at this threat

Red: Member
Black: Non-member

Threshold
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Mixup Training

Mixup training regularizes the neural network to favor simple linear behavior in
between training examples
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Original 
data

Mixup
data

Normal 
training



Methodology

Defense algorithm, analytical insights.
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Intuition
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Outliers: 
1. Significant influence to the target 

model
2. Easy to be detected by MIA 

attackers

Λ 𝑙𝑙 ≔
Pr(𝑙𝑙|𝑄𝑄𝑖𝑖𝑖𝑖)

Pr(𝑙𝑙|𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)

Intuition:
Reduce the influence of outliers

The figure above comes from the paper: N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and 
Privacy (SP). IEEE Computer Society, 2022, pp. 1519–1519. 
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Mixup Training

We use mixup to reduce the impact of
outliers, so that the model does not differ
greatly (in terms of loss) between
members and non-members
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Analytical Insights

PDF of loss value of members is shifted right by mixup

We will see how Λ = Pr(𝑙𝑙|𝑄𝑄𝑖𝑖𝑖𝑖)
Pr(𝑙𝑙|𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)

changes, intuitively and theoretically.
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Analytical Insights
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loss loss

prob prob

Λ =
Pr(𝑙𝑙|𝑄𝑄𝑖𝑖𝑖𝑖)

Pr(𝑙𝑙|𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)

Non-adaptive Attacker𝑙𝑙 𝑙𝑙
loss loss

prob prob

Adaptive Attacker
𝑙𝑙 𝑙𝑙
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Analytical Insights

Ratio Λ is reduced for targeted members.

Λ =
Pr(𝑙𝑙|𝑄𝑄𝑖𝑖𝑖𝑖)

Pr(𝑙𝑙|𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)
∝ exp

𝑙𝑙 − 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜 2

2𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 −
𝑙𝑙 − 𝜇𝜇𝑖𝑖𝑖𝑖 2

2𝜎𝜎𝑖𝑖𝑖𝑖2

∝ exp 𝜎𝜎𝑖𝑖𝑖𝑖2 − 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 𝑙𝑙2 + 2 𝜇𝜇𝑖𝑖𝑖𝑖𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 − 𝜇𝜇𝑜𝑜𝑜𝑜𝑜𝑜𝜎𝜎𝑖𝑖𝑖𝑖2 𝑙𝑙
≝ exp 𝑓𝑓 𝑙𝑙

Proposition 1:

With a probability approximately larger than 0.5, applying mixup to the model training
leads to a decrease in Λ for target members.

Proof: by discussing the sign of 𝜎𝜎𝑖𝑖𝑖𝑖2 − 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 .
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Analytical Insights

Conclusion: Mixup training lowers the upper bound of attack AUC.

Symbols:

 𝑃𝑃𝑚𝑚 (or 𝑃𝑃𝑛𝑛): Distribution of Λ of members (or non-members)

 𝑄𝑄𝑚𝑚 (or 𝑄𝑄𝑛𝑛): Distribution of log Λ of members (or non-members)

 𝛯𝛯 = logΛ

𝐴𝐴𝐴𝐴𝐴𝐴 ≤ −
1
2
𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃m,𝑃𝑃𝑛𝑛 2 + 𝐷𝐷𝑇𝑇𝑇𝑇 𝑃𝑃m,𝑃𝑃𝑛𝑛 +

1
2

Lemma: Decreasing Λ for target members -> Upper bound of 𝐷𝐷𝑇𝑇𝑇𝑇(𝑄𝑄𝑚𝑚,𝑄𝑄𝑛𝑛) decreases.

Proof: 𝑄𝑄𝑚𝑚,𝑄𝑄𝑛𝑛 are Gaussians -> 𝐷𝐷𝐻𝐻, u. b. of 𝐷𝐷𝑇𝑇𝑇𝑇 , has CLOSED FORM about Λ
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Analytical Insights
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About 𝑄𝑄𝑚𝑚 , 𝑄𝑄𝑛𝑛: 

𝜎𝜎𝑖𝑖𝑖𝑖2 − 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 = 0, when 𝑄𝑄𝑚𝑚 , 𝑄𝑄𝑛𝑛 are 
Gaussians.

Other cases: 
Experiments show distribution of 𝛯𝛯
resembles a Gaussian (right figure)



Experiments

Privacy results and utility results.
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Settings
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Datasets

Images:
1. CelebA
2. CIFAR-10
Tables:

MIMIC-III

MIAs

GAN-leaks (against G)
Logan (against D)
LIRA (both)

Defenses

Baselines:
1. PAR-GAN
2. RelaxLoss
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Metrics

Utility:
• Downstream classification accuracy

• Frechet Inception Distance for images

• Dimensional Wise Probability for tables

Privacy:
• Area under ROC curve of MIA
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Comparing Attacks
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LIRA is the most powerful attack algorithm,
from both perspectives:

1. TPR when FPR is low

2. Area Under ROC Curve
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Privacy Performance: ROC Curve
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CIFAR-10
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Privacy Performance: Area under ROC Curve
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Some GAN-leaks results are omitted
due to poor performance
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Utility Performance on Images
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Utility Performance on Tables

It can be observed that mixup
has a similar utility performance
with the unprotected case.
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Adaptive Attack

If the attacker knows mixup:
Mixup trained reference 
model

If the attacker knows the co-
membership information:
Mixed query

The strongest one:
naturally trained reference 
models + mixed samples for 
co-membership query. 

Mixup does provide a 
significant privacy gain in 
these cases.



Takeaways
Mixup training can reduce the likelihood ratio for target members.

Mixup training can lower the upper bound of the MIA attacker's AUC.
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