

Mixup Training for Generative Models to Defend Membership Inference Attacks

Zhe Ji¹, Qiansiqi Hu¹, Liyao Xiang¹, Chenghu Zhou²

¹Shanghai Jiao Tong University ²Institute of Geographic Sciences and Natural Resources Research, CAS

Speaker: Zhe Ji

Content

01-Background

Scenarios, MIA threats, existing works.

02- Preliminaries

The likelihood ratio attack, mixup training.

03-Methodology

Defense algorithm, analytical insights.

04-Experiments

Privacy results and utility results.

 $\mathbf{0}$

Background

MIA threats, scenarios, existing works.

Setup

Training dataset: Private data

Object to release: Trained model, or synthetic data from the trained model

Threats: The model may <u>memorize</u> training samples. Then attackers may <u>recover</u>, or <u>infer</u> the private training data from the released model or synthetic data

Membership Inference Attack (MIA)

Attacker input:

- A target model (victim)
- A target sample

Attacker output:

 The predicted probability that the target sample belongs to the training dataset of the target model

MIAs against Discriminative Models

MIAs against Generative Models

Assuming target M is a GAN, containing a generator G and a discriminator D

7

Defense against MIA on Generative Model is Hard

□ Features differed from discriminative models:

- 1. No confidence scores as ouput
- 2. Unknown downstream tasks

Goals of defense:

- 1. No reproduction or memorization of training data
- 2. Data utility reservation

Existing Solutions

PrivGAN

PAR-GAN

D_p = built-in adversary to predict which generator produces a synthetic sample

J. Chen, W. H. Wang, H. Gao, and X. Shi, "Par-gan: Improving the generalization of generative adversarial networks against membership inference attacks," in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 127–137.

S. Mukherjee, Y. Xu, A. Trivedi, and J. L. Ferres, "privgan: Protecting gans from membership inference attacks at low cost to utility," Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, pp. 142–163, 2021. [Online]. Available: https://doi.org/10.2478/ popets-2021-0041

Existing Solutions

DataLens

TopAgg: noisy gradient compression and aggregation

B. Wang, F. Wu, Y. Long, L. Rimanic, C. Zhang, and B. Li, "Datalens: Scalable privacy preserving training via gradient compression and aggregation," in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021, pp. 2146–2168.

Problems of Existing Solutions

Some works focus on the design of GAN architectures

11

- E.g. PAR-GAN, privGAN
- Shortcoming: complexity, computation overhead

Some use differential privacy

- E.g. Datalens
- Shortcoming: utility degradation

None has considered the strongest MIA, LIRA.

 $\mathbf{0}$

Preliminaries

The likelihood ratio attack, mixup training.

The Likelihood Ratio Attack (LIRA)

Likelihood ratio

H0: the target example is a member.

H1: the target example is not a member.

 $\Lambda(M) \coloneqq \frac{\Pr(M|M_{in})}{\Pr(M|M_{out})}$

Implementation

LIRA replaces distributions of models with distributions of losses, denoted by Q_{in} and Q_{out}

$$\Lambda(l) \coloneqq \frac{\Pr(l|Q_{in})}{\Pr(l|Q_{out})}$$

LIRA focuses on the true positive rate (TPR) at low false positive rate (FPR) regime

The Likelihood Ratio Attack (LIRA)

٨		After attacking several target samples,
9.4		attackers can choose a relatively high
5.2		threshold to reach a low FPR
4.4		
3.5	Threshold	
1.0		Here TPR=3/5, FPR = 1/4
0.8		
0.7		Existing defenses all fail to reduce TPR at
0.6	Red: Member	
0.5	Black: Non-member	IOW FPR
		We target at this threat

Mixup Training

Mixup training regularizes the neural network to favor simple linear behavior in between training examples

[1, 0]

03

Methodology

Defense algorithm, analytical insights.

Intuition

Outliers:

- 1. Significant influence to the target model
- 2. Easy to be detected by MIA attackers

$$\Lambda(l) \coloneqq \frac{\Pr(l|Q_{in})}{\Pr(l|Q_{out})}$$

17

Intuition: Reduce the influence of outliers

The figure above comes from the paper: N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, "Membership inference attacks from first principles," in 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2022, pp. 1519–1519.

Mixup Training

We use mixup to reduce the impact of outliers, so that the model does not differ greatly (in terms of loss) between members and non-members randomly sample $(x_1, y_1), (x_2, y_2)$ from \mathcal{D} ; sample $\lambda \sim \beta(\alpha, \alpha)$; $x_{mix} = \lambda x_1 + (1 - \lambda) x_2;$ $y_1 = one_hot(y_1);$ $y_2 = one_hot(y_2);$ $y_{mix} = \lambda y_1 + (1 - \lambda)y_2;$ /* generate fake samples */ sample $z \sim P_z$; $fake = G(z, y_{mix})$ /* update D */ $L_D = -D(x_{mix}, y_{mix}) + D(fake, y_{mix});$ $\theta_D = \theta_D - lr_D \cdot \nabla_{\theta_D} L_D;$ batch done = batch done + 1: /* update G */ if $batch_done \mod n_q == 0$ then $L_G = -D(fake, y_{mix});$ $\theta_G = \theta_G - lr_G \cdot \nabla_{\theta_G} L_G;$ end

Ratio Λ is reduced for targeted members.

$$\Lambda = \frac{\Pr(l|Q_{in})}{\Pr(l|Q_{out})} \propto \exp\left(\frac{(l-\mu_{out})^2}{2\sigma_{out}^2} - \frac{(l-\mu_{in})^2}{2\sigma_{in}^2}\right)$$
$$\propto \exp\left[\left(\sigma_{in}^2 - \sigma_{out}^2\right)l^2 + 2\left(\mu_{in}\sigma_{out}^2 - \mu_{out}\sigma_{in}^2\right)l\right]$$
$$\stackrel{\text{def}}{=} \exp\left[f(l)\right]$$

Proposition 1:

With a probability approximately larger than 0.5, applying mixup to the model training leads to a decrease in Λ for target members.

Proof: by discussing the sign of $\sigma_{in}^2 - \sigma_{out}^2$.

Conclusion: Mixup training lowers the upper bound of attack AUC. Symbols:

- \square P_m (or P_n): Distribution of Λ of members (or non-members)
- \square Q_m (or Q_n): Distribution of $\log \Lambda$ of members (or non-members)

$$\Box \ \mathcal{E} = \log \Lambda$$

$$AUC \leq -\frac{1}{2}D_{TV}(P_{\rm m}, P_{n})^{2} + D_{TV}(P_{\rm m}, P_{n}) + \frac{1}{2}$$

Lemma: Decreasing Λ for target members -> Upper bound of $D_{TV}(Q_m, Q_n)$ decreases.

Proof: Q_m , Q_n are Gaussians -> D_H , u. b. of D_{TV} , has CLOSED FORM about Λ

About Q_m , Q_n :

 $\sigma_{in}^2 - \sigma_{out}^2 = 0$, when Q_m , Q_n are Gaussians.

Other cases: Experiments show distribution of Ξ resembles a Gaussian (right figure)

Experiments

Privacy results and utility results.

		_
ſ		٦
- L	L	
	· · · · ·	_

MIAs

GAN-leaks (against G)Logan (against D)LIRA (both)

Defenses

Baselines:1. PAR-GAN2. RelaxLoss

Metrics

Utility:

- Downstream classification accuracy
- Frechet Inception Distance for images
- Dimensional Wise Probability for tables

Privacy:

Area under ROC curve of MIA

Comparing Attacks

LIRA is the most powerful attack algorithm, from both perspectives:

1. TPR when FPR is low

2. Area Under ROC Curve

Privacy Performance: ROC Curve

Privacy Performance: Area under ROC Curve

TABLE I: Attack AUCROC on CIFAR-10.

	Logan	Ratio	GAN-Leaks
unprotected	0.6435	0.6866	0.5083
mixup	0.5202	0.5303	0.5312
relaxLoss	0.5478	0.5326	0.4197
PAR-GAN	0.6668	0.7398	0.5291

TABLE III: Attack AUCROC on MIMIC-III

	Logan	Ratio	GAN-Leaks
unprotected	0.5264	0.5913	0.5028
mixup	0.5269	0.5283	-
relaxLoss	0.5296	0.5175	-
PAR-GAN	0.5350	0.5015	-

TABLE II: Attack AUCROC on CelebA

	Logan	Ratio	GAN-Leaks
unprotected	0.8346	0.8637	0.5317
mixup	0.5788	0.6615	-
relaxLoss	0.7703	0.5857	-
PAR-GAN	0.6571	0.7781	-

Some GAN-leaks results are omitted due to poor performance

Utility Performance on Images

TABLE IV: Downstream classification accuracy and FID on Images datasets.

(a) CIFAR-10			(b) CelebA-Gender		
Protection	Acc	FID 🖡	Protection	Acc 🕇	FID
unprotected mixup	0.490	150.944 159.098	unprotected mixup	0.912	111.980 104.376
relaxLoss	0.385	102.955	relaxLoss	0.836	97.746
PAR-GAN	0.404	199.053	PAR-GAN	0.876	157.724

Utility Performance on Tables

(a) DWpre F1-score of the logistic regression trained on real and generated data

(b) DWP, $Pr(x_i = 1)$ for each valid *i*

It can be observed that mixup has a similar utility performance with the unprotected case.

Adaptive Attack

TABLE V: Adaptive attack AUCs against *mixup* on CIFAR-10. The original LIRA against non-protected target GAN has an AUC of 0.6866

ref. models query	mixup trained	naturally trained
mixed query	0.5264	0.6084
single query	0.5426	0.5303

TABLE VI: Adaptive attack AUCs against *mixup* on CelebA. The original LIRA against non-protected target GAN has an AUC of 0.8637.

ref. models query	mixup trained	naturally trained
mixed query single query	0.5975 0.6701	0.7283 0.6615

If the attacker knows mixup: Mixup trained reference model

If the attacker knows the comembership information: Mixed query

The strongest one: naturally trained reference models + mixed samples for co-membership query.

Mixup does provide a significant privacy gain in these cases.

Takeaways

Mixup training can reduce the likelihood ratio for target members.

Mixup training can lower the upper bound of the MIA attacker's AUC.

References

P. Kairouz, S. Oh, and P. Viswanath, "The composition theorem for differential privacy," in International conference on machine learning. PMLR, 2015, pp. 1376–1385

N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, "Membership inference attacks from first principles," in 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2022, pp. 1519–1519.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, "mixup: Beyond empirical risk minimization," in International Conference on Learning Representations, 2018.

D. Chen, N. Yu, and M. Fritz, "Relaxloss: Defending membership inference attacks without losing utility," in International Conference on Learning Representations, 2021

J. Chen, W. H. Wang, H. Gao, and X. Shi, "Par-gan: Improving the generalization of generative adversarial networks against membership inference attacks," in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 127–137.

D. Chen, N. Yu, Y. Zhang, and M. Fritz, "Gan-leaks: A taxonomy of membership inference attacks against generative models," in Proceedings of the 2020 ACM SIGSAC conference on computer and communications security, 2020, pp. 343–362.

