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Privacy Threat
‣ Personal information in big data era 

‣ Is anonymization sufficient to protect user privacy? 

‣ Netflix recommendation challenge: remove personal identity 
information, replace names with random numbers 

‣ De-anonymize the Netflix database with the public 
information on IMDb 

‣ De-anonymization even works on partial, distorted, wrong 
data!
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Side Information
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new comer
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Differential Privacy
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Deep Learning with Differential Privacy
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Perturbation
θ = (𝜃1, …, 𝜃n) ϑ= (𝜗1, …, 𝜗n)

model  
tells!

Differentially-private 
stochastic gradient  

(DPSGD): add noise to 
gradient gt in each 
iteration of update



Deep Learning with Differential Privacy
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The recent work [Abadi et. al., CCS’ 16] only 
achieves ~90% accuracy whereas training w/o 
privacy reaches over 99% on MNIST. The result 
of [Shokri et. al., CCS’ 15] is even worse.

Privacy Accuracy
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Model Sensitivity
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Example
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Optimized Additive Noise Scheme
‣ Model sensitivity w = (w1, w2, …, wd) ∈ Dd: derivative 

vector of the cost on all training examples w.r.t. all 
parameters 

‣ To keep the cost minimal, noise should be added to the 
least sensitive direction of the cost function 

‣ Seek a probability distribution of the noise to minimize the 
cost as well as to meet differential privacy constraint!
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Optimized Additive Noise Scheme
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Objective
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Optimized Additive Noise Scheme
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Constraint 
global sensitivity on 

adjacent inputs: 
↵ = sup

8X,X0 s.t. d(X,X0)=1
kgt � g0tk

training datasets 
differ by a single 

instance

L2-norm 
between the 

gradientsPr[M(gt) 2 O]  e✏ Pr[M(g0t) 2 O]

)Pr[gt + z 2 O]  e✏ Pr[g0t + z 2 O]

)Pr[z 2 O � gt]  e✏ Pr[z 2 O � g0t]

)Pr[z 2 O
0]  e✏ Pr[z 2 O

0 + gt
� g0t]



Optimized Additive Noise Scheme
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Composition
‣ So far, we only show how to provide privacy guarantee in 

a single iteration of update 

‣ In practice, SGD takes many iterations until convergence 

‣ Iterative computation exposes the training data multiple 
times, degrading privacy level! 

‣ Our solution: Advanced composition theorem for 
differential privacy + privacy amplification by sampling
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Optimized Additive Noise Mechanism
1. Compute per-iteration privacy parameters according to composition theorem 

2. For each iteration 

1. Compute model sensitivity w 

2. Solve the optimization problem to find noise distribution 

3. Sample a noise 

4. For each batch of training data: Compute and clip the gradient by global 
sensitivity 

5. Compute the average gradient for the batch 

6. Add noise to the average gradient 

7. Update model parameters
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Implementation
Implement optimized noise generator (ours) and 
Gaussian noise generator (the state-of-the-art, 
Abadi et. al.) on Keras and Tensorflow 

Problem: computational challenges due to high 
dimensionality 

Solving the optimization problem using GPU 
operations 

Numpy noise generator
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Our scheme achieves higher accuracy over [Abadi CCS’ 
16] under the same privacy guarantee
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Thank you!
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