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Privacy |hreat
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Personal information in big data era
|s anonymization sufficient to protect user privacy?

Netflix recommendation challenge: personal
information, replace names with random numbers

De-anonymize the Netflix database with the
on IMDb

De-anonymization even works on partial, distorted, wrong
datal
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Differential Privacy
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Deep Learning with Differential Privacy
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Deep Learning with Differential Privacy

The recent work [Abadi et. al., CCS’ 16] only
achieves accuracy whereas training w/o
orivacy reaches over on MNIST. The result

of [Shokri et. al., CCS’ 15] is even worse.
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In previous works: link
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Model Sensitivity
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EXample
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different cost!
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Optimized Additive Noise Scheme

» Model sensitivity w = (w1, Wo, ..., Wq) € D9: derivative
vector of the cost on all training examples w.r.t. al
parameters

» To keep the cost minimal, noise should be added to the
least sensitive direction of the cost function

» Seek a probabllity distribution of the noise to minimize the
cost as well as to meet differential privacy constraint!
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Optimized Additive Noise Scheme

model sensitigi§frioution of
noise
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Optimized Additive Noise Scheme
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Optimized Additive Noise Scheme
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Composition

» So far, we only show how to provide privacy guarantee in
a single iteration of update

» In practice, SGD takes many iterations until convergence

» [terative computation exposes the training data multiple
times, degrading privacy level!

» Our solution: Advanced composition theorem for
differential privacy + privacy amplification by sampling

14



Optimized Additive Noise Mechanism

1. Compute per-iteration privacy parameters according to composition theorem
2. For each iteration

1. Compute model sensitivity w

2. Solve the optimization problem to find noise distribution

3. Sample a noise

4. For each batch of training data: Compute and clip the gradient by global
sensitivity

5. Compute the average gradient for the batch
6. Add noise to the average gradient

/. Update model parameters



Implementation

Implement optimized noise generator (ours) and
Gaussian noise generator (the state-of-the-art,

Abadi et. al.) on and

Problem: computational challenges due to high
dimensionality

M Solving the optimization problem using GPU
operations

MNumpy noise generator
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Our scheme achieves higher accuracy over [Abadi CCS’
16] under the same privacy guarantee
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Thank you!



