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|_ocalization via Crowdsourcing

» In a crowd, some users know about thelir locations while
some don’t. With distance observations between them,
how to localize each user?



|_ocalization via Crowdsourcing
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» Each user sends their prior estimates and distance
observations to a central server, who returns the most
ikely position for each.

» What if users would like to keep their locations private”?



Privacy-Preserving Localization
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» In a crowd, some users know about thelir locations while
some don’t. With distance observations between them,
how to localize each user without breaching privacy?



Privacy-Preserving Localization
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» In a crowd, some users know about their locations while
some don’t. With distance observations between them,
how to localize each user without breaching privacy?



Particle Representation

» User’s Location

» A user’s location Is represented by a set of particles
Zit={z1,...,zR}, Zt={Z1t, ..., ZN}.

» At time t, the server finds the most likely distribution of
Zt given Zt-1 and D.

Z; = argmax P(Z¢|Z;_1,D).
Z



First Attempt

» To encrypt all particles and run the inference in the
encrypted domain.

owever, encrypted operations are constrained.



Particle Representation

» User’s Location

» A user’s location Is represented by a set of particles
Zit={z1, ..., zr}. Each particle is associated with a
weight { w1, ..., WR}.

» For example, If the location estimate is {z1, z2, z3} with
orobabilities {0.6, 0.2, 0.2}, then the location is more
Ikely to be z1 than zs.




Particle Representation

» Users upload each particle’s weight {E(W1), ..., E(WR)}
and distance observations to others E(D) in encryption.

» Server updates each particle’s weight.



Privacy-Preserving Inference

» Server computes partial information Ci,r for each particle r
of each user i (] Is observed by I);
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Privacy-Preserving Inference

» With secret key sk, user | updates the weight Wi,r for its
particle r ( djs is the calculated distance between particle
s of user | and particle r of user i ):

w :wk_lexp[E k(cir)]

exp Z Z (Inwj s — ( Js_Dij)2/2‘72)]

jeEN (i) se{l,...,R}

= w,ﬁr 1 H H exp(lnw; ¢ — (djs — Dij)2/202)

jeEN (1) se{1,...,R}

_ dis — D;:)?
:wf,'rl H H wj,s'eXP(—(JQOQ 9))

JEN (i) s€{1,...,R}

-~ wf;l H H Pr(zir, 25,5 Dijit)-

JEN (i) s€{1,...,R}
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Privacy-Preserving fme
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But, with R particles, adversary can still guess correct
location with Prob. 1/R.
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Data Perturbation

» |dea: perturb Ziit ={z1, ..., zrR} as Yit = { y1, ..., YR}.

» Perturbation: add Gaussian noise N(0, o#) to Zit that
satisfies location differential privacy.
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Privacy Definition

» Location Differential Privacy:

A mechanism M satisfies (e, §)-differential privacy
iff for all z, 2z’ that are d(z, z") apart:

PriM(z) e Y] <e‘Pr[M(z) € Y]+,
and € = ,OdQ(Z, 2') + 2\/p log(1/9)d(z, "),

where p is a constant specific to the perturbation
mechanism we adopt.
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INnterpretation of Privacy Definition

» Location Differential Privacy: the projected distributions of
all the points within the same dotted circle are at most ¢
apart from each other.

M(z)(Y) M(Z')(Y) M(z”)(Y)

St _——_— -

IS smaller, indicating that it is harder to distinguish the two
locations, I.e., higher privacy level.
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Privacy Definition

» User Differential Privacy

If we report Z = (21,...,2r) as Y = (Y1, ..., YR),
then the probability of reporting Y given 7 is:

PriM(Z) e Y] = || Pr(M(z) € Y].

The user enjoys (€, d)-differential privacy with

€ = pRA*(Z,7") + 2\/plog(1/8)Rd2(Z,Z").
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Perturbed Private Inference

» Collecting Y, the server computes the pairwise distances
between each pair of perturbed particles as:

d(y,y') = \/Hy —y'[|3 — 402,
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How can we guarantee the inference result the same
with the unperturbbed case”
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Privacy and Utility Analysis

» Utility results: We proved d(y, y') is an unbiased
estimator of d(z, /)

» Privacy guarantee: We proved our perturbation scheme
satisfies location differential privacy and user differential
orivacy. Compared to previous work, we improve the
privacy level by \/r with the same utility level.
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Performance evaluation
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Performance evaluation

» Simulation results using random way point (RWP) model.
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Performance evaluation

» Comparison experiment and real-world experimental
results.
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Thank you!



