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Abstract— At events, such as conferences, indoor localization is
both contextual and ephemeral, in that localization is only needed
within the context of and for the duration of the event. As such,
the costs and requirements of providing such services need to
be minimal. In this paper, we design, implement, and evaluate
Tack, a new mobile application framework that is specifically
engineered to support such contextual and ephemeral indoor
localization during an event. To provide location-based services
with Tack, an event organizer only needs to bring and place a
small number of (reusable) beacons around the venue before the
event begins. As a system framework, Tack uses a combination
of known beacon locations, contacts over bluetooth low energy,
crowdsourcing, and dead-reckoning to estimate and refine user
locations. To make our location estimates more accurate, we
embrace the inherent nature of beacons, design crowdsourcing-
based inference algorithms, and present an extensive evaluation
by running real-world experiments with iOS devices and beacons.
Tack has been implemented as an open-source framework on the
iOS platform and can be used by mobile applications designed
for events with location-based services.

Index Terms— Smart devices, bluetooth, crowdsourcing, indoor
environments, localization, mobile computing, inference
mechanisms, particle filters.

I. INTRODUCTION

THERE is often a need to provide location-based services
within the context of a large indoor event at a venue

without any infrastructure support for indoor localization. At a
large conference, for example, estimates of user locations
are often beneficial for spontaneous social interaction, in situ
headcounts in conference rooms, as well as location-specific
push notifications. Such needs for indoor localization are both
contextual and ephemeral, in that location-based services are
only needed within the context of and for the duration of the
event, rather than permanently. As well, the incurred costs for
the required infrastructure, if any, will be borne by the event
organizers.
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While there exists a large volume of previous work in
the area of indoor localization, we found surprisingly few
that would be conceptually satisfactory for such contextual
and ephemeral indoor localization during an event. On one
end of the spectrum, some indoor localization schemes from
both academia and the industry have achieved a high degree
of accuracy, by relying on either specialized hardware such
as antenna arrays [1], or extensive offline measurements of
wireless signal fingerprints [2]. It is certainly not realistic
to expect event attendees to own hardware more specialized
than off-the-shelf smartphones. The needs for fingerprinting or
war-driving (e.g., [2], [3]), on the other hand, are inherently
venue-specific, rather than event-specific. The labour and mate-
rial costs for such fingerprint measurements or war-driving
are too overwhelming for contextual and ephemeral indoor
localization.

On the other end of the spectrum, there has been a
recent trend in the literature to mitigate, or even completely
avoid, the costs incurred by fingerprinting or war-driving the
venue [4]–[8]. These existing works focused on mobile
devices, and used a combination of noisy dead-reckoning
and various types of calibrating signals, such as fixed
beacons [6], encounters [9], signal-based landmarks [5],
or camera-based [8] navigation. While these strategies offered
inspiring ideas, they were not immediately applicable in
mobile applications that require contextual and ephemeral
indoor localization, due to their additional assumptions on the
venue (e.g., elevators) or the user (e.g. permissions to use the
camera).

In contextual and ephemeral localization, what do these
event organizers and their mobile applications need, anyway?
First, the costs for any infrastructure that needs to be estab-
lished by the event organizer before the event will need to be
minimal. Second, the energy costs to the attendees with their
smartphones have to be negligible, or else permissions will
not be granted. In this work, our fundamental objective is to
achieve the best possible localization accuracy within these
practical constraints.

In this paper, we design, implement, and evaluate Tack,
a new mobile application framework that is specifically engi-
neered to support such contextual and ephemeral indoor
localization during an event. When designing Tack, we share
the pessimism with existing work that pure dead-reckoning
using smartphone sensors is inherently noisy, and should only
be supplementary. To provide an initial infusion of accurate
location data, we recognize that Bluetooth Low energy (BLE)
has overwhelming advantages: it is energy-efficient; ubiquitous

0733-8716 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



864 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 4, APRIL 2017

in that it is supported by all modern smartphones; and above
all, used by the iBeacon-compatible transmitters [10] that
can be inexpensively acquired (less than $10 each), reusable,
and easily tacked out of sight at any indoor location. With
Tack, we take advantage of a collection of iBeacon-compatible
transmitters, referred to simply as beacons in this paper,
to provide accurate location data. To provide location-based
services with Tack, an event organizer only needs to bring
and place a small number of (reusable) beacons around the
venue before the event begins.

A unique advantage of a large indoor event is the density
of its attendees within a reasonably confined space, such as
a conference center or a hotel. Tack uses such density to its
advantage: thanks to the recent operating system support for
any smartphone to act as both a BLE advertiser and scanner
at the same time, Tack refines user location estimates using
crowdsourcing as they encounter one another. In the advertiser
mode, a device broadcasts its virtual beacon ID to nearby
BLE devices; while in the scanner mode, the device listens
to advertisements. Operating in both modes allows a pair of
devices to detect their ranges from each other, which is the
foundation for our crowdsourcing algorithm.

While promising, our design needs to be improved to
address new challenges that are unique to BLE beacons and
mobile devices. Due to its lower energy costs, the operating
range of BLE is only several meters, and distance estimates
using signal strengths are inherently noisy. Intuitively, the
number of beacons, each with known locations, will also affect
the accuracy of location estimates in a substantial way. The
critical challenge is how crowdsourcing, beacons, and dead-
reckoning can work together harmoniously towards improving
localization accuracy.

To overcome the lack of accuracy of distance estimates
with BLE beacons, we propose to formulate a maximum
a posteriori (MAP) inference problem based on graphical
models to seamlessly integrate crowdsourcing, beacons, and
dead-reckoning. We present models that are progressively
more complicated as more empirical observations are incor-
porated, with improved localization accuracy. Using real-
world tests on iOS devices and beacons, we have extensively
evaluated Tack with respect to its accuracy. In general, Tack
has achieved an accuracy of 2 to 4 metres with moderate
energy costs and latency in our experiments. Overall, Tack
only relies on a few beacons and does not require the support
of external power sources, thus is very easy and cost-efficient
to deploy. Tack has been implemented as an open-source
framework on the iOS platform, and can be readily used by
mobile applications designed for events with location-based
services.

II. RELATED WORK

The literature on indoor localization is vast, but the closely
related work to this paper falls into the following categories.

A. Fingerprinting-Based Localization
This line of work utilizes the unique set of WiFi [3], [11],

[12] or magnetic [13] fingerprints to evaluate user locations.
For WiFi fingerprinting, a serious problem is that the user may

unintentionally leak its WiFi SSID, which threatens its privacy.
Another issue with such a system is that it assumes multiple
access points are present, which may not be true in reality.
Magnetic fingerprint, on the other hand, may not be unique
in a large indoor space and cannot withstand infrastructure
changes. In our localization system, we rely on the estimated
distance instead of any fingerprinting.

B. Range-Based Localization
In these schemes, absolute point-to-point distance or angle

estimates are used for calculating positions. Depending on the
characteristics of wireless signals, methods of obtaining ranges
vary from Time of Arrival, Angle of Arrival, to Received
Signal Strength Indicator (RSSI) values. Approaches include
multilateration [2], probability inference, and wireless signal
model based methods [14]. These localization systems mostly
suffer from multi-path fading, background interference, and
other irregular signal propagation characteristics over long
distances and large spaces. In our localization framework,
we address this drawback by using raw distance estimates
only when the beacons are in close proximity to each other
when the distance estimate is most likely to be accurate, and
complement it with the technique of dead reckoning, contacts,
and crowdsourcing. Moreover, we are among the first works
that adopt the BLE virtual beacon mode for each user’s device
to obtain user-to-user distance observations in a localization
framework.

C. Dead Reckoning With Landmarks
Traditionally, we compute the motion trajectory of a smart-

phone by using its accelerometer and compass. Due to the
inherent noise in mobile sensors, the trajectories are often
accurate at the beginning, and gradually drift away. Landmarks
with known location are usually provided to reposition the
user from time to time to cancel out the cumulative error, in
typical ways as [5], [15], [16] do. The accuracy of localization
is naturally higher as the density of deployed repositioning
anchors is higher. [5], [16] proposed to use sensor signatures
that are unique in the WiFi-subspace as landmarks; however,
this kind of landmarks is not consistent across different smart-
phone platforms. WiFi-Marks [15] are special locations where
the received WiFi signal strength changes from increasing to
decreasing, representing the nearest position to a WiFi access
point. But one never knows its actual position relative to the
access point even at the tipping point, let alone the fact that
such landmarks are few and occur opportunistically anyway.

In contrast, we combine nearby beacons with contacts over
BLE to reposition users in our framework, greatly increasing
repositioning chances throughout time and space, and expand-
ing the influence range of the repositioning effect to users
beyond the one in contact. Such positive impact becomes
significant with larger crowds roaming the venue. These virtual
landmarks are not only device-independent, but also observed
frequently.

D. Localization Using Contacts
Opportunistic user interactions are used to develop human

escort services [6] or to improve indoor localization [9].
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In previous works [9], [17], contact is used in a “macro”
environment to select the path a user takes or the location
it resides at; we inherit the method and improve it to integrate
with particle filters. In previous implementations, contacts can
be spotted by a real person, or detected by audio or wireless
signals, which are subjective to environmental noise. Classic
Bluetooth for contacts was claimed to be slow in discovering
short-lived encounters (around 100 ms). BLE, on the other
hand, significantly reduces the discovering latency (6 ms for
the non-connection state). In Tack, contacts via BLE is not
only faster, but also free — each user acts as a virtual beacon,
broadcasting its own location estimates.

E. Crowdsourcing for Indoor Localization

In existing crowdsourcing schemes [7], [18], a central
server is designed to collect wireless signal fingerprints, sensor
signatures, or user trajectories from different users to alleviate
the effort of the offline training phase. One important problem
of these schemes is that the localization service cannot be pro-
vided instantaneously: they typically need a “warm-up” phase
for collecting some user trajectories to train a model of the
wireless fingerprints or sensor signatures. Our crowdsourcing
approach allows the localization system to work effectively as
soon as some user data are collected.

III. TACK: OVERVIEW AND CHALLENGES

A. Overview

Existing works have all assumed a dense deployment of
beacons, precisely because the accuracy of distance estimates
is only acceptable when the devices to be localized are very
close to the beacons. Yet, for our purpose of contextual and
ephemeral localization with a large number of users, it would
not be economical to deploy a high density of beacons across
the venue of an event. However, if we place beacons sparsely
in the venue, the fast-decaying BLE signals would make it
almost impossible for all users to position themselves.

We extend the horizon using dead reckoning (DR). DR is
a navigation process of calculating one’s current position by
advancing from a previously determined position based on the
number of steps of a user, and each step’s direction headings.
In Tack, we designed a software step counter by filtering the
accelerometer readings. Step counters are also supported by
modern smartphone hardware, such as the M7/M8 processors
on recent iOS devices. The heading direction can be easily
obtained from the magnetometer reading on smartphones.

However, when dead reckoning is used independently with-
out repositioning, the localization result can easily drift away
due to accumulated error. Thus, we propose to combine DR
with BLE beacons through particle filters: while DR tracks
users’ positions, the BLE signals observed from beacons
or mobile devices are adopted to correct users’ trajectories.
Particle filters will be thoroughly introduced in Sec. IV-A.

To take advantage of crowdsourcing, we further introduced
virtual beacons to enhance the density of beacons. In Tack,
each fixed beacon is configured with its own geo coordinates
on the given floor plan. At the very beginning, each mobile
user pulls all beacons’ coordinates from the server and turns

Fig. 1. Tack: Architectural overview.

on Bluetooth dual mode to broadcast as a virtual beacon, and
to detect both fixed beacons and other mobile users in its
vicinity. When running the service, all mobile users upload
their data to the server and download other users’ data from
the server periodically. Our crowdsourcing algorithm takes
all data as input, and outputs the position estimate of the
user. Computation can be performed either at the server or
locally on the user device. In our prototype system, we choose
to compute locally and accelerate the computation by using
the hardware-assisted Accelerate framework on the iOS
platform.

Fig. 1 shows an architectural overview of our design. The
key issue in Tack is how to combine different parts — dead
reckoning, BLE signals, and virtual beacons all together to
allow each mobile user to locate itself as accurately as possible
while minimizing the deployment costs. We will introduce the
challenges in each part respectively, and show how our design
overcomes these drawbacks to make all parts work seamlessly
together to deliver position estimates that are as accurate as
possible.

B. Challenge 1: Noisy Distance Estimates

Even though the use of beacons for indoor localization has
been explored by both industry (such as Estimote and Indoo.rs
Inc.) and academia [19], it is a problem that remains elusive
and far from solved. The primary reason is simple: due to
the low energy consumption imposed by BLE, any distance
estimates based on Received Signal Strength Indication (RSSI)
are inherently noisy, and are thus not suitable for triangulation
or similar algorithms that are designed for localization using
multiple transmitters.

To illustrate these challenges quantitatively, we have con-
ducted several experiments on Estimote beacons and iPhones
to gain a better understanding of BLE and beacons. The Core
Location framework on the iOS platform has conveniently
provided an estimate of distance based on RSSI measurements,
called accuracy, in the unit of meters from the beacon.
Besides the estimate, the CLBeacon class also provides raw
RSSI measurements called rssi. To find out which one is
a better indicator of the distance, we translate rssi into
a measured distance D using the standard free-space radio
propagation formula:

RSSIm = RSSI0 − 10n log10 D + xσ (1)
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Fig. 2. Distance estimates using BLE (sensors) are inherently noisy.

Here, RSSIm is the measured RSS on the user’s phone, RSSI0
is the RSS from the beacon at a distance of one meter,
n is the rate at which RSS falls with distance depending
on the local environment, and xσ is a lognormal distributed
random variable accounting for the slow-fading phenomenon.
We adopt the recommended values for these parameters.

Our experiments are conducted in a hallway with no obsta-
cles in sight and no other BLE devices turned on. In the two
groups of experiments, we fix the position of a beacon or
an iOS device, have the testing phone (iPhone 6S) placed at
certain distances from it, and measure accuracy and rssi.
We collect samples for multiple runs to compute the mean and
standard deviation of the distance errors.

When measuring distances from a beacon, as Fig. 2(a)
shows, the distance error obtained from the accuracy value
is smaller with a modest standard deviation than that translated
from rssi. On the contrary, when measuring distances from a
phone, Fig. 2(b) shows that the translated distance using rssi
enjoys a smaller error than using the accuracy value. This is
because the accuracy value provided by the iOS framework
is tuned for beacons rather than a smartphone; a smartphone
normally has a higher transmission power than a beacon, and
as a result, the distance it reports is usually less than the ground
truth.

Despite the difference between the values reported by
accuracy and rssi, we are also curious about the distance
errors when there are obstacles in the environment. We further
measured the distances reported by accuracy in the same
hallway with the beacon (phone) blocked by obstacles. The
result is depicted in Fig. 2(c). As we can tell, compared to the
open space, the reported values are mostly above the ground
truth, but are still close to them, particularly when the actual
distance is less than 10 meters in between.

But regardless of the situation, the overall bad news is
that we are not able to assume that distance estimates are
accurate unless the actual distance is small. Moreover, in
the presence of a beacon, the accuracy value is generally
a better indicator of the distance estimate. This is because
accuracy is tuned considering the surrounding environment,
and is usually used to distinguish different objects in the same
region of a beacon, according to Apple’s document. Although
quite noisy, the distance estimate is sufficiently accurate for
our localization algorithm as we will discuss later.

C. Challenge 2: Noisy Sensor Readings

Besides noisy distance estimates, sensors used in DR
pose another significant challenge. We have conducted new

experiments to quantify the errors in the heading direction
from magnetometer sensors on smartphones. Fig. 2d shows
the error when turning the smartphone’s heading from the
true north. The true north is obtained by the compass and
is recorded beforehand. As we can observe, the direction
error reaches 20 degrees when the direction change is 120
to 180 degrees. Overall, the heading direction measured using
a magnetometer has an error of around 5 degrees on average
when the user holds it in her hand, and the error is slightly
higher (around 10 degrees) when the phone is placed flat on
a desk.

The step counter may also be another source of error.
To quantitatively measure this source of error, we have con-
ducted an experiment by asking 5 users to hold their phones
and walk at different paces repeatedly. As shown in Fig. 3(a),
a steady pace introduces the least amount of error, mainly
because the filter parameter in the step counter is tuned
according to a normal speed. On average, the error is only
1.5 steps for every 50 steps. In the worst case, the error is
fewer than 3.5 steps. Such errors are not significant since
indoor users usually take fewer than 50 steps before they are
repositioned by contacts with beacons.

Our experiments so far have clearly shown that, with
both noisy distance estimates and noisy sensor readings, new
algorithms need to be designed to compute position estimates
as accurately as possible, taking such noise into account.

IV. A LOCAL VIEW: A PROBABILISTIC APPROACH

To introduce the localization inference system, we first take
a single user’s view. Each position is represented by a multi-
dimensional variable. Some variables have more significant
prior than others; for example, the fixed beacons with known
positions can be represented as a Dirac delta distribution. Since
the initial positions of the mobile users are unknown, their
positions can be considered as uniform distributions over the
floor plan. We use particles to represent each geo-distribution
and propose augmented particle filters like the model in [18].

A. Augmented Particle Filters

In control theory, particle filters are used to improve the
tracking accuracy of time-varying variables of interest, by
constructing a sample-based representation of the targeted
variables’ probability density function (pdf). In particular, its
performance exceeds other filtering methods, such as Kalman
filters, in cases where variables are non-linear and non-
Gaussian. In our localization system, as most of the previous
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Fig. 3. Position estimate error and convergence for each iteration in different settings (except (a) about step counter errors).

work, we are interested in tracking the locations of users with
their smartphones, represented by (x, y) coordinates in the
floorplan of the venue.

We begin our discussions from the principles of DR.
We consider a set of particles S = (S1, . . . , SN ) as a discrete
representation of the probability distribution of locations. Let
Sk

r = {xk
r , yk

r , lk
r , dk

r , wk
r } denote the r th particle at the kth

iteration. Here (xr , yr ) jointly represents the geo-coordinate,
lr denotes the disturbance in stride length of each step, dr is
the disturbance in user’s heading direction and wr means the
weight of the r th particle, suggesting how likely it represents
the true user location.

Particle filtering implements a recursive Bayesian filter
using the Sequential Monte-Carlo method. In the context of
dead reckoning using smartphone sensors, the algorithm goes
iteratively through the following four phases in each time slot
to estimate user locations:

♦ Initialization. At time slot 0, each particle’s position
(xr , yr ) is initialized to be uniformly distributed on the entire
region with equivalent weights. If the starting location is
given, the position is normally distributed around the starting
location. From time slot 1 onwards, the initial position is the
result from the last time slot.

♦ Prediction. As the user takes a step, we decompose the
step into two orthogonal components: the distance traveled and
the orientation of the step. The distance traveled is computed
as β + lr , where β is the average length of the user stride, and
lr denotes the disturbance in each step.

The orientation consists of the heading offset θ , the
real-time magnetometer reading αk , and its disturbance dr .

In practice the heading direction is obtained as follows.
Before localization, we record the magnetometer reading when
placing the device parallel to Y axis. This value is the
heading offset that does not vary much throughout the same
venue. During localization, we obtain αk by the magnetometer
reading. The sum (difference) of θ and αk is the current
heading direction from Y axis. Both lr and dr are drawn from
the empirical distribution according to our previous test results
in Sec. III. When a user takes a single step, all the variables
in each particle are updated to its predicted state. After the
kth step, the r th possible location (xk

r , yk
r ) is predicted as:(

xk
r

yk
r

)
=

(
xk−1

r + (β + lr ) cos(θ + αk + dr )

yk−1
r + (β + lr ) sin(θ + αk + dr )

)
(2)

♦ Update. The weight of each particle wk
r is now recalcu-

lated as the likelihood that the particle Sk
r represents the actual

location of the user:

wk
r = p(Sk

r ). (3)

In traditional robotic localization, wk
r is computed using a

joint Gaussian error model for the sensor data [20]; in [18],
particles violating map constraints are assigned a weight of
zero. In our system, the weight of each particle is determined
by the probability distribution of the user location, which
is conditional upon the beacons’ locations and the measured
distances in between. We will later explain how to update the
particle weight.

♦ Resampling. With the weight of each particle updated,
some particles have drifted far enough that their weights are
too small to contribute to the probability distribution of the
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user location. The particle population is then resampled by
eliminating the ones with small weights and duplicating the
ones with higher weights. Mere duplication will lead to the
depletion of particles, so we actually generate a new particle
drawn from a random distribution centered around the chosen
particle. After repeating this step several iterations, most of the
particles should be converged to an area. The user’s position
at the current time slot can be estimated by averaging over its
particle set.

B. Location Probabilities

From the viewpoint of a user, its position distribution
p(Sk

r ) is computed as the product of distance errors from
any observed users and beacons. Intuitively, the smaller the
distance error, the more probable that a position represents
the ground truth.

There may be one or multiple fixed beacons or mobile users
in the proximity of a user. The geo-locations of the fixed
beacons are known a priori, and we assume the positions of
nearby mobile users have already been computed recursively.
Suppose that a nearby beacon or the reference user with a
known position is located at (x j , y j ), and we probabilistically
infer the unknown user’s location by using distance estimates,
denoted as D̄ j , from the reference points. For each potential
location (xr , yr ), let its distance to the j th reference point
be Dr j , and the distance estimate error is D̄ j − Dr j .

We assume that the error in distance estimates is normally
distributed with zero mean, which is a reasonable assumption
according to the experimental results in Sec. III. With respect
to the j th reference point, the probability that the location
(xr , yr ) represents the true location is:

p j (xr , yr ) = 1√
2πσ

exp(− (D̄ j − Dr j )
2

2σ 2 ), (4)

When multiple independent reference points exist, the prob-
ability p(xr , yr ) for the location (xr , yr ) to be the true
location is:

p(Sr ) =
∏
j∈ref

p j (xr , yr ), ∀r ∈ {1, . . . , N}. (5)

Whenever a user finds at least one nearby reference point, the
weights of all its particles can then be computed during the
update phase by using Eqn. (3) and (5). Then the potential
locations for this user can quickly be narrowed down.

C. Resampling With Beacons

In the implementation of our augmented particle filters, we
are curious about the convergence criteria and how they affect
the resulting accuracy. Thus we run a series of small-scale
experiments to verify our assumptions.

In a typical office environment, we record the particles of
a user per iteration under the influence of nearby beacons.
We vary the number of beacons and the average distances to
them to figure out how these factors affect convergence and
the resulting accuracy.

Fig. 3(b)-3(d) show the resampling effect of the user when it
has an average of 3m to each beacon, with 2, 3 and 4 beacons

in presence respectively. Because the scanning interval is set
to be ∼ 300ms, a user usually obtains multiple groups of
distance estimates each second. For a more accurate estimate,
we collect 4 contiguous groups and compute 5 iterations for
each group.

Looking at the standard deviation of particle distributions,
and comparing to the result under 10 iterations (Fig. 3(e)),
we can tell that particles converge with 5 iterations. However,
when only 2 beacons are present, the result does not converge,
mainly because the position cannot be uniquely determined
geometrically with 2 beacons. With 3+ beacons, the result
converges with an error around 0.5m. We also run tests with
an increase of the average distance to beacons to ∼ 6m, and
found the final averaged error converges to ∼ 2m. Essentially,
with more beacons around and smaller average distances to
them, the error becomes smaller.

The experiments above not only provide clues to the conver-
gence criteria, but also provides an empirical understanding of
the confidence level of user position estimates. For example, if
a user is repositioned by 3+ beacons, or if its average distance
to beacons is small, its position estimate is closer to the ground
truth with high probability. These empirical properties serve
as an important basis for our upcoming discussions.

V. A GLOBAL VIEW: HIDDEN MARKOV

MODEL REPRESENTATION

In the previous section, we have shown the method of
computing an unknown position based on the locations of
nearby beacons and users, whose positions are assumed to be
calculated beforehand. However, if none of the positions are
known, we would encounter a cold start problem. To avoid this
problem, we place beacons at locations where the users are
most likely to pass by for the location information to properly
propagate from known points to unknown places.

Despite these efforts, we found that the hurdle lies funda-
mentally in the constraints that each user can only observe
nearby BLE devices, thus the impact of the observations is
local. Can we expand such a local view to a more global view
including all the users, in order to more accurately infer each
user’s position? The answer to this question is our proposed
statistical crowdsourcing framework, to be presented in this
section.

A. A Graphical View

We describe Tack by using a graph G. In G, we assume
there are a total of M users or beacons scattered in the region,
and each of them is represented by a node with its probability
distribution. Let zi = (xi , yi ) denote the location distribution
of user i or the known position of a fixed beacon. For any
user i , it scans a noisy distance observation Dij from its
neighbor user j , or does not observe j at all. Each location
variable zi is associated with a prior distribution p(zi ), which
represents the location distribution over the planar region
R = {(x, y) ∈ R

2 : a1 ≤ x ≤ a2, b1 ≤ y ≤ b2}. Node zi and
z j are related to each other by the observed distance between
them, so we should describe them in pairs.
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Fig. 4. Tack: A hidden Markov model.

For ease of computation, we use a particles-based sam-
pling technique to represent continuous pairwise conditional
dependencies. To avoid confusion, we use Si to denote an
arbitrary particle of user i , and Sir to denote the r th particle
of user i . Let the distance between particle Si and Sj be
D̄i j , i.e., D̄i j = ||Si − Sj ||. We assume the distance estimate
error Dij − D̄i j follows a normal distribution with zero mean,
which respects the results in Sec. III. The probability that the
observed distance represents the true distance between user i
and j , given the positions of two particles Si and Sj , is:

p(Dij |Si , Sj ) = 1√
2πσ

exp(− (D̄i j − Dij )
2

2σ 2 ), (6)

when Dij is observed. If user i does not observe j , the
probability distribution should preclude area where j is. Let
Dmax be the maximum range that BLE signal reaches, then

p(�Dij |Si , Sj ) = 1 − I (D̄i j < Dmax), (7)

when Dij is not observed.
The probabilities of Eqn. (6) and (7) are the probabilities

before normalization. p(Dij |Si , Sj ) can be seen as a discrete
representation of the pairwise potential p(Dij |zi , z j ). This
pairwise potential represents the probability distribution of the
observed distance given the two users’ positions, and will be
used in our Hidden Markov Model (HMM).

B. Hidden Markov Model

With the notations in Sec. V-A, all users’ positions at time
t are considered collectively state Zt of the system. If we
only consider the pairwise distance observations at each time
t , then all users’ positions at time t are independent of their
respective positions from time 1 to t − 2 given their state
at time t − 1. Thus we could describe each user’s trajectory
with a Markov chain. However, since each user’s position is
not directly visible, we introduce a Hidden Markov Model to
describe our system.

Considering that the observation of the system often
involves multiple users rather than a single user, we cannot
use multiple independent Markov chains to describe Tack.
Instead, we use a vectorized state Zt = {z1,t , . . . , zM,t } to
describe users’ states at time t in coalesce, with each variable
representing each user’s position. The distance observations
are denoted by Dt , which essentially consists of all pairwise
distances detected between users.

Fig. 4 is an illustration of the system model, with the hori-
zontal arrow representing the transition between states, and the
vertical arrow denoting that the observation is conditioned on
its state. We formulate the localization problem as maximizing

the conditional probability of a state given the sequence of
observations as follows:

Z∗
t =arg max

Zt
p(Zt |D1, . . . , Dt )=arg max

Zt
p(Zt , D1, . . . , Dt ).

(8)

Theoretically, the problem above can be solved by a variant
of the Viterbi algorithm. The algorithm is a dynamic pro-
gramming algorithm for searching the most likely sequence
of hidden states that results in a sequence of observed events
in HMMs. Let

μt (Zt ) = max
Zt

p(Zt , D1, . . . , Dt ), (9)

then the recurrence equation is

μt (Zt ) = max
Zt

p(Dt |Zt )p(Zt |Zt−1)μt−1(Zt−1). (10)

In hidden markov model terms, p(Dt |Zt ) is the Emission
Probability representing the probability of Dt conditioned
on Zt . And p(Zt |Zt−1) is the Transition Probability, which is
the probability of the current state conditioned on its previous
state.

The major challenge of this problem is to implement the
dynamic programming algorithm within our framework. As we
found out, the particle representation of each position, the
pairwise dependencies, and the resampling procedure based
on them has an innate dynamic programming structure: the
prediction step is equivalent to computing the joint proba-
bility distribution of p(Zt |Zt−1)μt−1(Zt−1) by updating each
particle using Eqn. (2). The update step is to calculate the
conditional likelihood of the Emission Probability, which is

p(D|zi,t ) =
∏
j 	=i

p(D|zi,t , z j,t ), ∀i, (11)

by combining Eqn. (6) and (7). Last but not the least, resam-
pling particles’ weights can be considered as multiplying the
likelihood to the probability distribution.

Different from the augmented particle filters in Sec. IV-A,
we consider the joint probability of all user positions with
respect to the observed distances in between them. Note that
in the recurrence equation, the Transition Probability does not
involve any crossing term of more than one entry, and can
thus be computed locally on each user’s phone. The Emission
Probability deals with more than one entry, so for every time t ,
each user needs to collect all other users’ data to update its
position distribution using Eqn. (10).

C. Resampling With a Global View

One may naturally wonder what the advantage of resam-
pling with a global view is, as opposed to using the local view
only. We show the effect from two aspects: first, having global
information improves localization accuracy; second, global
information solves the “cold start” problem, i.e., even if no
one knows its exact position at the beginning, a global view
can quickly narrow down each user’s possible location range.

We run a few field tests to verify that global informa-
tion helps to improve positioning accuracy. In an office
of 15m × 20m, which resembles a typical conference room,
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Fig. 5. Position estimates are improved with a global view for User 2.

Fig. 6. A global view solves the “cold start” problem.

we place two beacons and run the positioning algorithm with
each particle’s behavior recorded. We then repeat the experi-
ment by adding two more virtual beacons. Fig. 5(a) and 5(b)
show the respective results with particles in each iteration
represented by pink circles. Two diamonds denote two fixed
beacons, while a triangle, square, and star represent the ground
truth locations of User 1, 2, 3, respectively. We found that with
additional two other users, the particles of User 2 converges
more quickly towards its ground truth position. The result
shows User 2’s performance indeed improves in the presence
of other users. Note that in all the tests, user positions are
not known beforehand, so User 1 and 3 are not equivalent to
beacons. This experiment confirms our motivation that a global
view helps propagate the repositioning effect to devices that
are farther away.

Compared to our previous local approach in Sec. IV,
the global view method does not assume that locations of
nearby users are known. In other words, the method can still
improve one’s location estimate even if it observes no other
users around. To verify the effect, we run a simulation on
a 50 × 50 floor plan, with 4 fixed beacons, and 10 roaming
users for 5 time slots. We compare three methods: resampling
with fixed beacons, implying that each user only uses positions
of beacons that it encounters to reposition itself; resampling
with a local view, in that each user adopts the positions of
both encountered beacons and users to reposition itself; and
resampling with a global view, which collects information
about all other users to assist localization.

Fig. 6 illustrates the average position error for 5 contiguous
time slots using the three methods. For resampling with a
global view, the figure shows the error per iteration per time

slot. It is obvious that with all three methods, the error is
highest in the first time slot, and gradually decreases. This is
due to the fact that no prior information is obtained by any user
at the outset. Within each time slot, the three methods show
approximately the same position error at the beginning, except
that the error of resampling with a global view decreases
dramatically after a few iterations.

Essentially, at each update, resampling with a local view
only provides the user whatever the current position estimate is
for every encountered user – no matter the estimate is updated
in the current time slot or not. This is because the user can
only collect the estimates of those users that it encounters.
By resampling with a global view, on the other hand, we are
able to iterate through each user several times in a single
update, since the location estimates of all other users are
provided. Thus, as we can tell from Fig. 6, comparing to
resampling with only a local view, the global view not only
improves accuracy but also solves the “cold start” issue.

From our small-scale field tests and simulations, we found
that resampling with a global view can improve localization
performance from the perspective of accuracy and efficiency.
However, such advantages are not obtained for free. A draw-
back of this approach lies in its implementation: a user
will need all other users’ data to compute its own position
estimate, which incurs communication overhead. The scale of
the particles from all the users may also introduce a significant
computation overhead. We will introduce our unique imple-
mentation technique to address this challenge in Sec. VII-B.

VI. A SPATIO-TEMPORAL VIEW: CONDITIONAL

RANDOM FIELDS

In our experiments, we found that both dead reckoning
and RSS-based observation introduced a substantial amount
of noise to the localization system. Insights gained from our
experiments implied that the most effective way to eliminate
such noise is through immediate contacts with beacons or users
with significant prior knowledge about its location. To improve
the overall localization accuracy, a proper inference mecha-
nism should be designed to maximize the influence of those
positions with significant priors, and effectively propagate their
information to other nodes in the system.

We run a series of simulations to verify this point. First,
in the setting of 50×50 floor plan, we run the HMM algorithm
as shown in Sec. V with 4 fixed beacons and 10 roaming users
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Fig. 7. Beacons introduce significant prior information; how auxiliary information improves accuracy (“B” and “U” represent beacons and users respectively;
partial results are shown).

without any prior knowledge. Among these users, we replace
User 3, 5, 6, 9 with beacons located at the same coordinates
but with the positions known as prior. The resulting positioning
error is shown in Fig. 7(a), 7(b) and 7(c), where 8 beacons
and 6 users represent the scenario after the replacement.
Obviously, when the locations of more beacons are known, the
overall error is smaller. Fig. 7(b) and 7(c) show the average
positioning error for each user throughout time slots. User 1,
2, 8 remain after replacement while User 3, 6, 9 are replaced
in Fig. 7(c). Examined more closely, the positioning results
of User 2 and User 8 deteriorate with crowdsourcing if no
prior knowledge of users’ positions is learned beforehand.
Other users’ positioning results are not shown due to space
constraints.

Knowing that the significant prior can greatly improve
localization accuracy, how should we utilize it in Tack? The
problem lies in three aspects: first, how to define nodes
with significant prior information; second, how to increase
the number of nodes with such auxiliary information in the
system; and finally, how to utilize that extra bit of information
to improve positioning accuracy. We will answer each question
respectively.

Since the nodes with prior known are sparsely scattered in
the venue, or along a user’s trajectory, it would be beneficial
to jointly consider time and space for increasing the number
of such nodes in the system. Thus, we introduce a more
powerful and general graphical tool called Conditional Ran-
dom Field (CRF) to describe our localization system from a
theoretical perspective. With a spatio-temporal view, we would
be able to incorporate more features that help localization.

But the advantage is gained without its unique challenge.
In the previous HMM-based approach, due to the “memo-
ryless” property of Markov chains, one computes its position
only based on the current state and one state before. With CRF,
we essentially incorporate more time-related features when
inferring user positions. To achieve that, we need to file the
history data collected from all users within a certain window.
We would elaborate on the features and the implementation
detail in this section.

A. Conditional Random Fields

Conditional random fields (CRFs) can be considered a gen-
eralization of HMMs. They are undirected graphical models
that encode a conditional probability distribution p(Z|D) using
a given set of features. While HMM treats the observations

Fig. 8. Tack: A conditional random field model.

across different times as conditionally independent given
the position states, CRF needs no independence assumption
between the observation variables. CRFs have been widely
used in applications such as robot navigation and speech
recognition. By eliminating the independence assumptions
between observations, the model is more flexible and capable
of describing many more features.

In this section, we first transform our system HMM model
to a CRF model and show how these features are implemented
in Tack.

1) From HMM to CRF: Different from HMMs, CRFs are
more flexible in describing systems with arbitrary features.
Each feature takes in as input: the observations across all
times D, the current time t , the current state Zt , and the
previous state Zt−1. To compute the conditional probability
p(Z|D) on an undirected graph, we use cliques potentials
rather than the product of conditional distributions as in a
directed model. A clique is a subgraph of which every pair
of nodes is connected by an edge. In CRF presentation, we
consider that all observations are represented as an entirety D,
which is linked with any state node like in Fig. 8. In that
figure, node Zt−1, Zt , and D form a clique.

Let C = {zc} be the set of cliques in G. Then CRFs define
the conditional probability of state variables as follows:

p(Z|D) = 1

P(D)

∏
c∈C

�(D, zc). (12)

where � is the potential function defined over a clique, and
P(D) is the partition function that is a normalization factor
over all variables states. We assume the potentials factorize
according to a set of feature functions { fk}, to each of which
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Fig. 9. Tack: A spatio-temporal view.

a real-valued weight λk is attached. Thus,

�(D, zc) =
K∏

k=1

exp(λk fk(D, zc)). (13)

To extend HMM with the time dimension, we “unroll” the
model in time and present Tack using an undirected graph G as
in Fig. 9. All clear circles represent state nodes which describe
position distribution, and the grey circles are observations
nodes. HMM requires observations are independent of each
other given the state, thus it is unable to describe feature like
user displacement Di,t−1 across different times.

Since all states are connected to a common observation,
a typical clique contains D, Zt−1 and Zt . The conditional
probability can be further derived as:

p(Z|D) ∝
T∏

t=1

K∏
k=1

exp(λk fk(t, D, Zt−1, Zt )). (14)

Our objective is to find the set of states Z that maximizes
the conditional probability in Eqn. (14) by converting HMM
into CRF without losing the advantage of HMM. To incorpo-
rate both Transition and Emission probabilities into the CRF
model, we introduce two corresponding features:

f1(t, D, Zt−1, Zt ) = I (Dt−1)I (Zt−1)I (Zt ),

f2(t, D, Zt−1, Zt ) = I (Dt )I (Zt ), (15)

and their respective weights are:

λ1 = log p(Dt−1|Zt−1, Zt ),

λ2 = log p(Dt |Zt ). (16)

The weight of the first feature is the conditional potential of
the displacement observation given positions Zt−1 and Zt .
Essentially, the higher the likelihood, the more weight will
be assigned to the position pairs. And the second feature
corresponds to the likelihood of observations given certain
position probability distribution.

2) Revisiting Transition Probability: The transform above
from HMM to CRF is not sufficient. Note that the transition
probability in HMM is the probability of the state conditioned
on its previous state, which is not only invalid on an undirected
graph but also precludes the possibility of backward propaga-
tion, i.e., to let the current state influence the past state.

To make the feature more expressive, we adopt pairwise
potential functions to describe the bidirectional transition
probability between node zi,t−1 and zi,t . We build the pairwise
potential function based on the kinematic model using the DR
results. In the kinematic model, we calculate user displacement
depending on the combined results of the step counter and the
magnetometer. To calculate the displacement from time t − 1
to t , we accumulate the displacement of each step in between:

(
	xi

	yi

)
=

⎛
⎜⎜⎝

∑
k

	xk
i∑

k

	yk
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∑
k

βi cos(θ + αk
i )

∑
k

βi sin(θ + αk
i ).

⎞
⎟⎟⎠ (17)

βi is the average stride length, and αk
i is the heading orienta-

tion per step of user i .
We assume the user displacement in Eqn. (17) follows the

Gaussian distribution around the true value according to the
results in Sec. III. Based on that, we compute the pairwise
potential between node zi,t−1 and zi,t . As usual, a discrete
representation of the distribution is adopted in the form of
pairwise potential between two particles Si,t−1 and Si,t as
follows. Again, Si,t represents an arbitrary particle of user i
at time t .

p(Di,t−1|Si,t−1, Si,t ) = 1

2πσ 2 exp(− (xi,t − xi,t−1 − 	xi )
2

2σ 2 )

× exp(− (yi,t − yi,t−1 − 	yi)
2

2σ 2 )

(18)

By using Eqn. (18), we are allowed to express the transition
probability on the undirected graph. We will show the power
of this expression in the following section.

Reviewing Fig. 9, Conditional dependencies between vari-
ables representing different users at the same time slice can be
expressed in the form of pairwise relationship as depicted in
Eqn. (6). The edge across different time slices is formulated
as the pairwise potential function Eqn. (18). The figure shows
an example with time window being 3.

Equipped with CRF, we not only preserve the advantage
of HMM by directly importing the transition and emission
probabilities, but also are able to describe more spatial or
temporal features.

B. Confidence and Trend

We now try to answer the question of how to determine
nodes with more significant prior than others, and how to
integrate the feature within the CRF framework.

By significant prior, we essentially wish that a node with
a higher confidence about its position will influence a node
with a lower confidence, but not the other way around to
prevent the estimation error from propagating. For example,
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a node that is close to a fixed beacon has a higher confidence
about its position estimate than a node not observing anything.
More specifically, having examined the property in Sec. IV-C,
we can distinguish the nodes with a higher confidence by
using criteria such as the number of nearby beacons and the
distance to the beacons. In Tack, we implement more than
such an intuition. Each user maintains a weight account to
estimate its confidence level. The weight account is assigned
a high value whenever the user gets repositioned with nearby
fixed beacons, representing high confidence about its estimated
position; one point is deducted from the account when the user
takes a step implying the confidence level reduces as the user
position drifts.

The “confidence” feature is special in CRF in that we do
not usually specify the inference direction over an undirected
graph. However, in the inference algorithm to be illustrated
later, we will show that the feature can be implemented
without violating the problem structure. We define the feature
as follows. Letting Wi,t be the weight left in the account of
user i at time t ,

exp( fk→i (t, D, zi,t , zk,t )) = I (Wk,t > Wi,t ),

exp( ft−1→t (t, D, zi,t , zi,t−1)) = I (Wi,t−1 > Wi,t ).

Our simulations (with the same settings as our previous
ones) show the effect before, indicated by HMM, and after,
represented by CRF, the “confidence” feature is implemented.
With some prior knowledge about each user’s estimates, the
overall error is reduced by almost 2m, as shown in Fig. 7(a).
Examining more closely, User 2, 3 and 8 respectively improves
accuracy without deteriorating other users’ accuracy, if we
compare Fig. 7(c) and 7(d).

Apart from the “confidence” feature, we can do far more
with CRF. For example, BLE trends measured from continuous
BLE signals across time slots can be considered as a feature.
A user’s position change should be consistent with the wireless
signal trend: when the signal trend shows that a user is
approaching a beacon, its trajectory cannot go the opposite
way. This feature is derived from our empirical observation
that the trend of the wireless signal strength is far more reliable
than the strength itself, and existing work [15] echos our
approach. For user i and fixed beacon j , the feature function
is defined as follows:

exp( f3(t, Dij,t , Dij,t−1, zi,t , zi,t−1))

= I (
sign(Dij,t − Dij,t−1)

sign(||zi,t − z j || − ||zi,t−1 − z j ||) > 0).

where zi,t represents the position of user i at time t and z j

is the known position of the fixed beacon j . When user i
is observed to approach a fixed beacon, the feature assigns
a value of 1 if its position estimate reflects the approaching
trend, and 0 otherwise. The same feature applies when user i
goes the other way around.

Such a trend feature takes advantage of the powerful presen-
tation of CRF over HMM: it is able to describe overlapping
portions of the observation sequence. An HMM with such
overlapping feature is no longer a proper generative model,
nor is the likelihood function correct.

1) Backward Propagation: One may naturally wonder what
the benefit is to take the historical trajectories and observations
into account in CRF while our system possesses the Markov
property and HMM seems to be a fit. In fact, historical
data helps to improve the overall positioning accuracy by
increasing the number of nodes on the undirected graph that
have significant prior distributions. We achieve this through
forward and backward propagation between nodes at different
time instances.

Fig. 9 gives such an example: when user i encounters a
fixed beacon at time t , it successfully corrects its position
and introduces significant prior knowledge into the undirected
graph. If we only consider adopting the approach in Sec. V, the
corrected position zi,t may never affect zk,t for the broken link
in between. Even if user k is somehow connected with user i
through other users, zk,t can only be influenced indirectly by
zi,t via other nodes. By incorporating historical data, nodes
can affect each other through different paths. For example, the
message from zi,t can propagate to zi,t−1 through backward
induction, then zi,t−1 affects zk,t−1 through pairwise potential,
and finally, zk,t receives the message from zk,t−1 to adjust its
distribution through forward induction.

The CRF model is able to correct location estimates in
the past, and that correction helps to deduct a more accurate
current estimates overall, even in the case that the users are
not currently in contact with each other. By incorporating the
history information, the inference algorithm over the graphical
model is able to yield a more accurate result for each user.

C. Inference on CRF

In our problem, since we aim at estimating the position
variables for all users, which are represented by particles, with
all the features, the combinations over such a large domain
is exponential. This makes exact inference computationally
intractable for Tack, especially in the case that location track-
ing is needed. Therefore, we choose to apply an approximate
inference algorithm to solve it.

We wish to solve the problem of computing the unobserved
variables zi,t for all users at different time points within
the window to maximize the joint conditional probability of
Eqn. (12). The problem can be solved by inference, which is
a particular type of learning, aiming at searching the instances
of the hidden variables that maximizes their probability con-
ditioned on all observed data points. Learning a CRF can be
done by any inference algorithm for undirected models, such
as iterated conditional modes, Gibbs sampling, loopy belief
propagation, etc.

We choose to use Gibbs sampling as our approximate
inference algorithm. The method is a Markov chain Monte
Carlo (MCMC) algorithm for obtaining a sequence of samples
which are approximated from a specified multivariate proba-
bility distribution. It generates a Markov chain of samples,
each of which is correlated with nearby samples.

Initially, we randomize all users’ positions over a planar
region, and then repeat the following procedures for multiple
iterations until convergence. In each iteration, we compute the
probability distribution of each node conditioned on all other
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Fig. 10. Simulation setting and results.

nodes in the graph, and then sample from the distribution. The
conditional probability of p(zi,t |D, Z\zi,t ) can be expressed
as the probability conditioned on its neighboring nodes Nzi,t .
For example, in Fig. 9, the neighbors of node zi,t−1 are
zi,t−2, zi,t , z j,t−1, and zk,t . The conditional probability is
computed based on the feature functions, and we wish to find
the most likely joint states probabilities. For each node zi,t , we
compute:

p(zi,t |D, Z\zi,t ) = p(zi,t |D,Nzi,t )

∝
∏

z j,s∈Nzi,t

∏
k

exp(λk fk(D, zi,t , z j,s)),

∀i, j ∈ [1, M], ∀t, s ∈ [1, T ]. (19)

Then we sample zi,t from p(zi,t |D, Z\zi,t ). We repeat the
probability computation and sampling procedure for each
hidden state node on G until convergence. Upon convergence,
the joint probability of all nodes is maximized, and the
probability distribution for each node represents the most
likely distribution of the positions.

VII. IMPLEMENTATION AND EVALUATIONS

We have conducted both large-scale simulations and real-
world experiments using iOS devices, based on our real-world
implementation of Tack.

A. Simulations

In simulations, we attempt to emulate the real-world crowds
as much as possible to reveal how Tack works against large
crowds with different approaches. We use a random waypoint
model to generate user traces on a 50 × 50 floor plan for

TABLE I

MEAN / STANDARD DEVIATION OF ERRORS (METERS)

20 contiguous time slots, with a minimum velocity of 1.0, a
maximum velocity of 4.0, and a maximum waiting time of 2.0.
Fig. 10(a) illustrates an example of visualized user trajectories
throughout 20 time slots for 15 users. Based on those traces,
we further generate the displacement, user-to-user, and user-
to-beacon distance observations, according to each respective
model in Sec. III. For instance, with respect to the user-to-
beacon distance observation, we draw the observed value from
a Gaussian distribution centered around the true value, with a
standard deviation linearly increasing with the true distance,
and a maximum observable range 13.0. Other observations are
generated accordingly as well.

As we try to understand how the crowd sizes and different
methods affect the position error statistically, we test 4 crowd
sizes — 7, 15, 30 and 45 users, using three methods — the
HMM algorithm, and the CRF algorithm with window size
being 3 and 5, respectively. In all the settings above, we place 6
beacons to each, and each setting is tested for 30+ runs.

1) Results: Due to space constraints, not all our results
can be included in the figures. Readers may refer to Table I
for complete results. Fig. 10(b) and 10(c) show the position
error at each time slot for different crowd sizes when applying
different methods.
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The general trend is that the CRF algorithm has better
accuracy than HMM, and the accuracy improves with larger
window sizes. Comparing the errors across different crowd
sizes, we surprisingly find that the error does not necessarily
decrease as the crowd size gets larger where more data fed into
the system. For HMM, the error increases as the crowd size
gets larger. For CRF, the error almost remains the same when
the user number varies from 7 to 30, but increases by almost
1 meter when the crowd size is 45. The reason is that with
more data input, more errors are introduced into the system.
The pairwise dependencies between users propagate not only
the genuine location information but also the errors in the
system. Fortunately, CRF can prevent such error propagation
to some extent by incorporating features and side observations.
Thus, we observe a relatively mild increase in errors with CRF
as the crowd size increases.

Fig. 10(d) and 10(e) illustrates the error distributions for
varying crowd sizes with different methods. For HMM, 70% of
errors are within 4.0m, 4.1m, 5.1m and 9.8m for user number
is 7, 15, 30 and 45. For CRF with a window size of 3,
the corresponding results are 4.15m, 4.15m, 4.0m and 5.45m
respectively. Finally, we vary the number of beacons to see
how it affects the resulting accuracy. Fig. 10(f) shows the error
distribution when the number of users is 30, and the running
algorithm is CRF with a window size of 3. Overall, given
the same setting, the more beacons, the higher the resulting
accuracy. For 6, 8, and 9 beacons, 70% of errors are within
4.0m, 3.27m and 2.84m respectively. The costs of deployment
should be considered when pursuing a higher localization
accuracy in practice.

B. Implementation

1) A Software Framework: As a prototype system, we adopt
iOS as the mobile development platform, and Parse server
as the mobile backend for collecting and broadcasting user
data. Considering the scale of our experiment is not very large
(∼ 10 users), we implement all computing functions on mobile
devices for fast prototyping. The performance cost will be
discussed in later sections.

The interface of Tack is shown in Fig. 11.The left part
of the figure is our main interface. In the upper middle of
the screen, the real-time location is displayed in the form of
(x, y) coordinates. The steps taken are shown at the bottom
left corner while the confident level sits at the bottom right
corner. When the user presses the “Report” button, its current
position is recorded. A user can also intuitively get its position
by the moving yellow dot on the map, as shown in the right
part of the figure.

We have implemented the main body of our crowdsourcing
algorithm as a framework in the Swift programming language
on the iOS platform, called LocationKit. An application
can easily import LocationKit as a library in order to
provide its indoor localization service. LocationKit incor-
porates several components: particle filter, dead reckoning,
communication, and the inference algorithm. The inference
algorithm is the core component built on particle filter, while
particle filter relies on dead reckoning. The communication

Fig. 11. Tack: interfaces.

module is mainly used for communicating with the server.
If the connection to the server breaks down, Tack will fall
back to a local operation mode, and estimates the position
based on dead reckoning and resampling according to a local
view.

Fig. 12 gives an overview of the workflow on the imple-
mented prototype system. The left part runs locally on each
mobile device while the right part describes the communica-
tion with the server. At the beginning, the device registers
with the server and sends its unique “name” to associate
with its object ID once and for all. The device’s “name”
is used to distinguish from other mobile devices in crowd-
sourcing. With its name, a device can broadcast to others
via BLE advertiser mode. At the same time, the device
creates a TLocation object to inspect local location updates.
To do that, TLocation initiates dead reckoning, i.e., the
TStepCounter class, and turn on BLE scanner mode to
scan other BLE devices. The particles of the device are
supervised by the TParticleFilter class and the class
reacts accordingly to the feedback of dead reckoning, scanning
results of nearby beacons and the data pulled from the server.

Taking inputs from the dead reckoning output, observations
of nearby beacons and other devices’ information from the
server, the MAP inference algorithm calculates the most likely
position of the current user. As the inference algorithm is the
core part of Tack, we will discuss the issues encountered as
below.

2) Code-level Optimizations: Implementing the inference
algorithm as described in Sec. VI-C seems to be easy, but one
should keep in mind it’s a machine learning algorithm which
can be very inefficient when running on a mobile device. Thus
we adopt all measures below to ensure efficiency.

a) Vectorization: The first issue we face is the huge
sample space of particles of all users. For instance, if we assign
100 particles to each user, with 10 users the total number of
particles reaches 103. For any two users, the number of particle
pairs will be 104. If we execute all particle-wise operations in
loops, each iteration will take more than 1 second to finish.
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Fig. 12. The workflow of Tack.

This is far too slow for the localization service, not to mention
the intensive computation drains the battery power quickly.

Hence, we utilize the Accelerate framework on iOS
to reduce the computation cycles. The Accelerate frame-
work exposes SIMD instructions available in modern CPUs
to improve the performance when working with arrays or
matrices. We novelly express particles of each user in a matrix
and convert all the particle-wise operations to matrices opera-
tions, so that all computation of the conditional likelihood are
performed in batches. This greatly improves the computation
efficiency and eventually gains at least a 10× speedup.

b) Early termination: While processing data in batches
improves the computation speed, we found the speed can be
improved further. Compared to running the inference algo-
rithm for a fixed number of iterations in each update, we
terminate the computation earlier if the difference between the
results in the last two iterations is smaller than a threshold.

c) Scaling up very small numbers: Another problem we
encountered is that in calculating the conditional probability
of each particle, the probability sometimes can be too small
to be represented by fixed point numbers. As we compute
the conditional probability in Eqn. (19), a large number of
neighbors and high weights λk in the exponent can easily
yield very small probabilities. To avoid the problem, we first
compute all exponential coefficients, cap them by a constant
and use the results as the new exponential coefficients in
Eqn. (19). With the conditional probabilities of all particles
normalized per node, this approach produces correct results
without generating very small numbers.

C. Performance Evaluation

In this section, we will first show the results of our real-
world experiments, and then discuss the performance overhead
and other costs.

We have evaluated Tack in a hallway of 40m×50m deployed
with 7 beacons, which mimics the hallway between conference
rooms at a conference venue. To acquire the ground truth, we
record several random user traces, and randomly place markers
with an average of 1.5m between adjacent ones. The user

trajectories and placement of beacons are shown in Fig. 13(a).
Red dots represent beacons, and all 7 trajectories are labeled
using the same colors of the users.

To verify the effectiveness of our crowdsourcing algorithm,
we ask users to follow the marked trajectories and Tack will
log the position estimates while the users move along these
trajectories. Throughout the entire trajectory, each user would
meet 2.8 other users on average. We test the system with
different settings, and repeat our experiments for 5-10 runs
for each setting. In our evaluation, we wish to inspect both
instantaneous errors over time and average errors.

1) Results: By varying the number of participating users
and the algorithm parameters, we have 6 different configura-
tions of setting: the total number of participants are 5 and 7
respectively, HMM algorithm, CRF algorithm with window
size being 3 and 5. All instantaneous errors are recorded and
parts of the results are shown in Fig. 13(b)-13(f).

In Fig. 13(b), we compare the performance of different
algorithms with the same number of participants. When 5 users
roaming at the same time, the percentage of errors that are
within 5m for HMM, CRF with window size 3 and CRF with
window size 5 are 84%, 76%, 84% respectively. For HMM,
in more than 5% of the cases, the error is as large as 10m,
while for CRF with window size 5, there are almost no cases
where the error is larger than 8 meters. In Fig. 13(c), we
compare the impact of a different number of participants on
the same algorithm, in this case, CRF with window size 5.
We found the error is less than 5m in 85% of the cases with
7 users and in over 90% of the cases with 5 users.

We calculate the average errors for all different settings and
summarize the results in Fig. 13(d). All average results are
between 2-4m. For all three algorithms, 7-user outperforms
5-user, with an improvement of 22.5% on average. In general,
CRF with larger window size has better performance than
those with smaller window size. HMM has good average
accuracy but suffers larger errors in some corner cases.

For further examination, we study User 3’s instantaneous
error under various settings. The result is averaged over
10 runs. We found that in all cases, its error is smallest both at
the start and end, where the user is nearest to the position of a
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Fig. 13. User traces and experimental results.

fixed beacon. The error increases as the user walks away from
a beacon, and reduces in the middle where the user encounters
other virtual beacons. To verify the error reduction is due to
the encounter with other users, we show the instantaneous
error of all users in one run in Fig. 13(f). From this figure, we
found that as User 3 encounters User 4 and User 5 halfway
through its trajectory, its error drops as User 4 and User 5
have recently been repositioned by fixed beacons.

Overall, our real-world experimental results are in accord
with the simulations results, even with better accuracy in
some cases. This is because due to the building structure and
physical confinement, the actual area that the users wander
about is more constrained than in simulations, so that the user
trajectories tend to have more overlaps.

2) Performance Costs: The localization accuracy is not
achieved without any sacrifice. While more participating users
can improve the accuracy, it naturally increases the com-
putation overhead, especially when the inference algorithm
runs locally. By experiments, we show how the computation
overhead vary with the crowd sizes, and prove that Tack is a
relatively light-weight system that would not burden mobile
devices.

All following experiments are repeated for sufficient rounds
to obtain the average value. Since the results vary according
to different models and types of devices, we report the results
on iPhone6S (iOS 10.2) as an example in Table II and Fig. 14.
For all experiments, we reused the same setup as in the last
section and choose CRF algorithm with window size 3 as the
crowdsourcing algorithm.

To properly measure the energy consumption on iOS
devices, we use the time period that the battery power drops
by 1% as the metric. We believe this is the most accurate

TABLE II

ENERGY CONSUMPTION AND LATENCY

measurement we can obtain since Apple does not provide
any interface for battery capacity, nor can we tear the device
down. As the display and other factors also consume the
battery power, we set a control group by running the same
interface without the localization functions turned on. As a
result, the control group runs 203.75s on average before the
battery power drops by 1%. To compare with other localization
systems, we also run a group of experiments where the devices
continuously scanning for WiFi, which is the basis for WiFi
fingerprinting.

To gauge the localization latency, we use as a metric
the duration between the time that a user uploads its prior
estimate and observations to the server and the time that the
user finishes running the inference algorithm and update its
location.

As Table II shows, the energy consumption is reasonable
in Tack. Compared to the idle states, the time period that the
battery power dropping 1% reduces by 2.7%, 9.2%, 15.5%
and 24.5% respectively for 1, 4, 7, 10 users. In the case
of WiFi scanning, the corresponding reduction is 60.43%.
On one hand, Tack is obviously more energy-efficient than
WiFi-based localization systems. On the other hand, the results
show that the battery power consumption is mostly introduced
by the increased computation complexity, which can be easily
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Fig. 14. Localization latency with different crowd sizes.

migrated if we deploy the inference algorithm on the server
rather than the mobile device.

Table II also shows that the mean of localization latency
grows almost linearly with the number of participants, which
corresponds to the power consumption performance. In 80%
of all cases, the localization delay is within 0.36s, 0.46s,
0.65s, and 0.80s respectively for 1, 4, 7, 10 users, and all
cases are within 1 second, as shown in Fig. 14. We think
the energy cost and latency cost are acceptable for an indoor
localization service. But for a very large crowd (30+ users),
it is recommended to deploy the inference algorithm to the
server to alleviate the burden from mobile devices.

3) Infrastructure Costs: We would like to compare the
infrastructure costs with a typical WiFi RSS-based indoor
localization scheme. Sorour et al. [11] builds a simultaneous
localization and radio mapping system and experiment it at
the same location as we are. They achieved 2 to 4 meters
of accuracy by using five Linksys access points with each
costing over 80$. Tack, deployed in the same area, achieved
the same accuracy level with 7 Estimote beacons with each
only 10-20$. Besides, the installation of beacons is far easier
than access points. They are portable and lasts for two years
without external power sources.

To sum up, our experimental results have shown that Tack
can effectively provide accurate indoor localization for differ-
ent scales of crowds. It is light-weight to run on a mobile
device. For larger crowds, one can easily migrate a part of the
computation to the server. More importantly, it is very cheap
and convenient to deploy, thus is suitable for ephemeral event
locations, such as a conference.

VIII. CONCLUSION

Tack is one of the few practical, easy-to-deploy indoor
localization systems building on the new wireless technology
BLE. We exploit several techniques such as dead reckon-
ing, virtual beacons, and contacts over BLE, together with
the crowdsourcing algorithms to create a software frame-
work. We improve the localization performance progressively
through both theoretical analysis and field tests. Implemented
as a framework in the Swift programming language, Tack’s
performance is extensively evaluated on the iOS platform in
real-world experiments. Overall, Tack achieves an accuracy of
2-4 meters indoors when 7 beacons are deployed in an area of

40m×50m. Compared to other indoor localization systems on
smartphones, Tack is accurate, energy-efficient and less costly.
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