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ABSTRACT
Recent studies have shown that graph neural networks (GNNs)

are vulnerable to unnoticeable adversarial perturbations, which

largely confines their deployment in many safety-critical domains.

Robust graph structure learning has been proposed to improve the

GNN performance in the face of adversarial attacks. In particular,

the low-rank methods are utilized to purify the perturbed graphs.

However, thesemethods aremostly computationally expensivewith

𝑂 (𝑛3) time complexity and 𝑂 (𝑛2) space complexity. We propose

LRGNN, a fast and robust graph structure learning framework,

which exploits the low-rank property as prior knowledge to speed

up optimization. To eliminate adversarial perturbation, LRGNN

decouples the adjacency matrix into a low-rank component and

a sparse one, and learns by minimizing the rank of the first part

while suppressing the second part. Its sparse variant is formed

to reduce the memory footprint further. Experimental results on

various attack settings have shown LRGNN acquires comparable

robustness with the state-of-the-art much more efficiently, boasting

a significant advantage on large-scale graphs.
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1 INTRODUCTION
Graphs are ubiquitous structures representing real-world data, such

as social networks, academic networks, biological networks, etc.

Extensive studies for Graph Neural Networks (GNNs) have arisen
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Figure 1: The left is a toy example of adversarial attacks on
the graph, where red lines denote adversarial edge insertion.
The right is the corresponding adjacency matrix, where the
dash lines denote the perturbed rows and columns. In the
adjacency matrix, green grids denote normal edges, and red
grids denote perturbed edges.

in recent years showing the power of graph structure learning [1–

10]. Meanwhile, a range of works has demonstrated that GNNs are

vulnerable to adversarial attacks [11, 12], where only a few unno-

ticeable perturbations can dramatically degrade the performance

of GNNs. Such vulnerability has raised concerns about utilizing

these models in high-security areas and leads to limitations in

application. Therefore, obtaining robust GNNs resisting adversar-

ial attacks is critical. In this paper, we focus on the graph struc-

ture perturbations injected before training, i.e., graph structure

poisoning attacks. In this setting, graph structures are perturbed

by adding/deleting/rewiring edges before training GNN models,

whereas node features remain unchanged.

Great efforts have been devoted to robust graph structure learn-

ing [13–17]. One promising way is to eliminate the influence of

attacks from the aspects of graph spectrum, i.e., the set of eigen-

values of the adjacency matrix of the graph. Empirical results have

revealed that either targeted attack or non-targeted attack will sig-

nificantly change the spectrum of graphs and increase the rank

of the adjacency matrix [16, 17]. Moreover, removing adversar-

ial edges reduces rank faster than removing normal edges [17].

Hence prior methods exploit matrix rank minimization to clean

the adjacency matrix with respect to the graph spectrum. However,

existing methods are computationally expensive as they optimize

on perturbed graphs directly, resulting in 𝑂 (𝑛3) time complexity

and 𝑂 (𝑛2) space complexity.

Beyond that, it is difficult for the existing methods to filter out

the low-rank components incurred by adversarial attacks. To bet-

ter understand this problem, we analyze how attacks influence the

graph spectrum. Figure 1 depicts a toy example of graph adversarial

attacks with edges insertion. We denote the adjacency matrix of

the perturbed subgraph as 𝑃 and the clean subgraph as 𝐶 . Consid-

ering the sparse nature of graphs, the bottom-left and the top-right

https://doi.org/10.1145/3459637.3482299
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Figure 2: An illustrative example on the spectrum changes of the adjacency matrix by adversarial attacks. In (b)(c), the red
dashed rectangles correspond to each other. (d) illustrates the difference between LRGNN and previous methods on spectrum.

submatrices could be approximated by zero matrices. Hence the

graph spectrum is the union of the spectra of 𝑃 and 𝐶 , since it is

well known that the spectrum of a disconnected graph is the union

of the spectra of its connected components. Specifically, we show

the singular value vs. order on real-world graphs in Figure 2, where

the SOTA graph attack, metattack [18] is performed.

As we further illustrate in Figure 2b, the distribution of 𝑃 ’s sin-

gular values are denser after the attack. We visualize the graph

spectrum before and after the attack in Figure 2c and 2d, and found

adversarial perturbation significantly increases the singular values

as well as the rank of 𝑃 , introducing high-rank components into the

graph spectrum. It can be observed that it is intrinsically hard to

decouple the spectra of 𝐶 and 𝑃 as their singular values are mixed

up and thus are dealt with indifferently.

In this paper, we propose LRGNN, standing for light and robust
GNN learning with low-rank information. We resolve two issues:

(i) how to decouple the spectra of 𝑃 and𝐶 ; and (ii) how to speed up

robust graph structure learning. For the first issue, we follow the

intuition of robust principal component analysis (RPCA) [19, 20], in

assuming the adjacency matrix can be decomposed into a low-rank

component (𝐶) and a sparse component (𝑃 ). As indicated by Fig-

ure 2d, the ideal clean subgraph is naturally low-rank, and LRGNN

learns to minimize its rank; whereas the perturbed subgraph has a

few low-rank components (mixed up with ideal𝐶), while mainly oc-

cupies the higher-rank part of the spectrum (ideal 𝑃 ). And LRGNN

isolates and suppresses it. Previous methods, not distinguishing the

two components, try to suppress them together, which may lead to

non-robust performance.

To solve the second issue, we reduce the search space from the

entire graph of size 𝑛 × 𝑛 to a low-rank representation of size 𝑟 × 𝑟 .
With proper initialization, we can prove that optimization over

the reduced space is equivalent to that over the original graph.

Moreover, to avoid constructing a full adjacency matrix, which

requires 𝑛 × 𝑛 memory footprint, we propose a sparse variant of

LRGNN to make it more scalable. It samples entries of the adjacency

matrix and treats them as incomplete observations to the graph.

Highlights of our contributions are as follows:

• Based on the intuition of RPCA, LRGNN decouples the spectra

of 𝐶 and 𝑃 in the joint learning, leading to more robust graph

purification in the spectrum domain.

• By taking the low-rank information as prior, LRGNN reduces the

optimization search space from the entire graph to a low-rank

representation. A sparse variant of LRGNN is further derived to

reduce memory consumption.

• Experiments on a variety of real-world datasets demonstrate that

LRGNN effectively defends against different types of attacks, yet

15x faster and with 10x less memory over SOTA methods on the

large Pubmed graph.

The rest of the paper is organized as follows. Section 2 briefly

reviews related works. Section 3 introduces the background to

facilitate understanding. Section 4 formally describes the problem

and our proposed framework. Section 5 reports the evaluation

results. Section 6 concludes the paper.

2 RELATEDWORK
2.1 Adversarial Attacks On Graphs
Even though GNN successfully takes graph tasks onto deep learn-

ing domain, it naturally inherits the vulnerability of general deep

learning methods. Even slight or unnoticeable perturbations on

graphs can significantly hurt the performance of GNN. For instance,

Zügner et al. [21] propose nettackwhich injects unnoticeable pertur-
bation on the graph structure and nodes’ features, while preserving

important data characteristics. RL-S2V [22] performs reinforcement

learning to learn the way of injecting adversarial attacks on graph

with prediction feedback from the target classifier. However, these

methods mainly focus on the targeted attack, and employ greedy

approximation to generate adversarial examples on discrete graph

data. As an alternative, Xu et al. [23] model untargeted attack as a

min-max problem over the GNNmodel and graph structures, where

graph structure can be optimized in a continuous domain, and the

results are projected back to the discrete ones. Likewise, metattack
[18] proposes to generate untargeted attacks via meta-learning.

2.2 Robust Graph Learning
As extensive methods have demonstrated the latent vulnerability

of general GNNs, a variety of mechanisms have been designed to

improve the robustness of GNN models. One family is to penalize

latent adversarial nodes in information aggregation. RGCN [13]

proposes to model hidden-layer features as Gaussian variables and

assigns fewer weights to nodes with higher variance in aggregating

neighbors’ information. SimP-GCN [14] constructs a new feature

graph according to node features which achieve robustness by joint

learning on structure graph and feature graph.

Another family is to preprocess the graph structure by preserving

inherent graph properties. Wu et al. [15] found the attacked nodes



tend to have dissimilar features, by which they propose to remove

links between dissimilar nodes as a defense. Entezari et al. [16]

found nettack affects the the high-rank part of the graph spectrum,

and exclude the impact with low-rank approximation. Since the

preprocessing step is independent of training, the preprocessed

graph may be suboptimal for GNN models. To resolve the issue, Jin

et al. [17] propose a joint framework for graph structure learning

and the GNN task to preserve sparsity and low-rankness of the

graph.

However, we observe a significant lack of efficiency in previous

low-rank approximation based approaches. Hence, we propose a

method to speed up robust structure learning with the low-rank

property as prior knowledge. We also perform graph structure

learning jointly with GNN tasks.

3 PRELIMINARIES
We introduce some preliminaries for ease of understanding this

work.

3.1 Matrix Rank Minimization
Matrix rank minimization aims to acquire a low-rank approxima-

tion of the input matrix [24, 25], which can be formulated as

minimize

𝐿
rank(𝐿)

subject to | |𝐴 − 𝐿 | |𝐹 ≤ 𝛿,
(1)

where 𝐴 is the input matrix, 𝐿 is the learned low-rank matrix, and

𝛿 is the noise level. | | · | |𝐹 denotes the Frobenius norm. However, to

solve such a rank minimization problem is usually impractical as

it is NP-hard. As an alternative, we can replace the rank function

with the nuclear norm, since the nuclear norm minimization is the

tightest convex relaxation of the rank minimization. Hence we can

formulate the problem as

minimize

𝐿
| |𝐿 | |∗

subject to | |𝐴 − 𝐿 | |𝐹 ≤ 𝛿,
(2)

where | |𝐿 | |∗ =
∑
𝑖 𝜎𝑖 , and 𝜎𝑖 is the 𝑖-th singular value of 𝐿. Further-

more, as Eq.2 satisfies the Slater’s condition [26, 27], we can derive

a more efficient solution by

minimize

𝐿

1

2

| |𝐴 − 𝐿 | |2𝐹 + 𝜇 | |𝐿 | |∗ . (3)

It is well established that Eq. 3 is equivalent to Eq. 2 for some value

𝜇 (𝛿).

3.2 Matrix Completion
Matrix completion (MC) is a promising technique to recover an in-

tact matrix with low-rank property from undersampled/incomplete

data [28, 29]. When the sampled entries are corrupted by noise, the

MC problem can be formulated as a rank minimization problem:

minimize

𝐿
rank(𝐿)

subject to | |𝑃Ω (𝐴 − 𝐿) | |𝐹 ≤ 𝛿,
(4)

where Ω is a subset of {(𝑖, 𝑗) |0 ≤ 𝑖 < 𝑛, 0 ≤ 𝑗 < 𝑛}, and the operator
𝑃Ω : R𝑚×𝑛 → R𝑚×𝑛 is defined as [𝑃Ω (𝐴)] = 𝐴𝑖 𝑗 , if (𝑖, 𝑗) ∈ Ω, and
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[𝑃Ω (𝐴)]𝑖 𝑗 = 0 otherwise. Similar to Eq. 3, the optimization problem

can also be expressed as

minimize

𝐿

1

2

| |𝑃Ω (𝐴 − 𝐿) | |2𝐹 + 𝜇 | |𝐿 | |∗ . (5)

4 THE PROPOSED FRAMEWORK
The illustration of the framework is shown in Figure 3. To defend

against adversarial attacks, LRGNN learns to isolate the latent struc-

ture attacks into the sparse matrix 𝑆 while keeping the clean part

𝐿 low-rank. The low-rank part is parameterized by𝑊 , and GNN

is parameterized by 𝜃 . By optimizing over𝑊 , 𝑆 , and 𝜃 , LRGNN

recovers the clean adjacency matrix jointly with GNN tasks. In this

section, we will define the problem and illustrate the detail of the

proposed framework.

4.1 Problem Statement
Let G = (V, E, 𝑋 ) be a graph, whereV = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of
nodes, E is the set of edges and𝑋 = {𝑥𝑇

1
, 𝑥𝑇

2
, ..., 𝑥𝑇𝑛 } ∈ R𝑛×𝑑 denotes

the node feature matrix with dimension 𝑑 . The relation between

nodes can also be represented by an adjacencymatrix𝐴 ∈ {0, 1}𝑛×𝑛 ,
where𝐴𝑖 𝑗 = 1 if there exists an edge between 𝑣𝑖 and 𝑣 𝑗 and𝐴𝑖 𝑗 = 0

otherwise. Furthermore, following the common setting of node

classification, only a partial node setV𝐿 = {𝑣1, 𝑣2, ...𝑣𝑙 } is labeled,
and the labels are correspondingly C𝐿 = {𝑐1, 𝑐2, ...𝑐𝑙 }.

We mainly focus on the most general type of GNN, i.e., graph

convolutional network (GCN)[3], in this work. Other GNN variants

can be applied with straightforward extensions. Given the graph

G = (V, E, 𝑋 ) and label set C𝐿 , GCN aims to learn a mapping

function 𝑓𝜃 (𝐴,𝑋 ) : V𝐿 → C𝐿 according to the labeled node set to

make predictions on the unlabeled nodes. The formulation can be

represented as

minimize

𝜃
L(𝐴,𝑋, 𝜃, C𝐿) =

∑︁
𝑣𝑖 ∈V𝐿

𝑙 (𝑓𝜃 (𝐴,𝑋 )𝑖 , 𝑦𝑖 ), (6)

where 𝜃 is the parameter of 𝑓𝜃 , and 𝑙 (·, ·) is the loss function. Specif-
ically, 𝑓𝜃 (𝐴,𝑋 ) is implemented by a two-layer message passing

model, expressed as

𝑓𝜃 (𝐴,𝑋 ) = softmax(𝐴𝜎 (𝐴𝑋𝑊1)𝑊2) (7)

where 𝜃 = {𝑊1,𝑊2}, 𝜎 is ReLU activation function, 𝐴 = 𝐷̃−1/2 (𝐴 +
𝐼 )𝐷̃−1/2 and 𝐷̃ is the diagonal matrix of𝐴 + 𝐼 with 𝐷̃𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 + 1.

Formally, fast and robust graph structure learning is as follows:



Definition 4.1. Given label set C𝐿 and graph G = (V, E,X) with
adversarially perturbed 𝐴 and clean 𝑋 , we aim to simultaneously

learn a clean graph structure and the GNNweights efficiently, which

has high prediction accuracy on the node classification task of the

unlabeled nodes.

4.2 Speed Up Robust Graph Structure Learning
As depicted in Figure 2d, adversarial attacks dramatically increase

the singular values of the subgraph perturbed. Hence one effective

way to defend the malicious perturbations is to purify the adjacency

matrix 𝐴 by removing high-rank components with respect to Eq. 3.

However, there remains a significant computational challenge as

the computation of | |𝐿 | |∗ requires O(𝑛3) time complexity due to

singular value decomposition (SVD). In this section, we first pro-

pose an efficient approach to perform robust structure learning.

To effectively filter out the spectrum of the perturbed subgraph,

we further adopt a robust PCA based approach to recover a clean

adjacency matrix 𝐿.

4.2.1 Fast Matrix Rank Minimization. Overall, we provide a
new formulation as

minimize

𝑊

1

2

| |𝐴 − 𝑍𝑊𝑍𝑇 | |2𝐹 + 𝜇 | |𝑊 | |∗, (8)

where 𝑍 ∈ R𝑛×𝑟 is the top-𝑟 columns of left singular matrix of 𝐴,

and𝑊 ∈ R𝑟×𝑟 is the learned weight matrix. In this formulation,

𝐿 is decomposed as 𝑍𝑊𝑍𝑇 , and | |𝐿 | |∗ = | |𝑊 | |∗ since 𝑍𝑇𝑍 = 𝐼𝑟×𝑟 .
Benefiting from optimizing over𝑊 in this formulation, we reduce

the time complexity from O(𝑛3) to O(𝑟3), which is much faster

as 𝑟 ≪ 𝑛. To solve such an optimization problem with the non-

differentiable | |𝑊 | |∗, we use Forward-Backward Splitting (FBS)

algorithm [30] to iteratively update𝑊 by

𝑊 𝑘 = prox𝜂𝜇 | | · | |∗ (𝑊
𝑘−1 − 𝜂∇𝑊 | |𝐴 − 𝑍𝑊𝑍𝑇 | |2𝐹 ), (9)

where 𝜂 is learning rate and prox𝜂𝜇 | | · | |∗ (·) is the proximal operator

of nuclear norm, which can be represented as

prox𝜂𝜇 | | · | |∗ (𝑊 ) = 𝑈 (𝜎𝑖 − 𝜂𝜇)+𝑉𝑇 , (10)

where𝑊 = 𝑈𝑑𝑖𝑎𝑔(𝜎1, ..., 𝜎𝑟 )𝑉𝑇
by singular value decomposition.

To understand how it works, we in the following prove that

optimizing Eq. 8 is equivalent to optimize Eq. 3 when the adjacency

matrix 𝐴 has rank 𝑟 .

Theorem 4.2. If symmetric adjacency matrix 𝐴 ∈ R𝑛×𝑛 has rank
𝑟 (𝑟 < 𝑛), given the singular value decomposition 𝐴 = 𝑈 Σ𝑟𝑈

𝑇 ,
𝑍 = 𝑈 , the initial values for𝑊 and 𝐿 are𝑊 0 = 𝑍𝑇𝐴𝑍 = Σ𝑟 , and
𝐿0 = 𝐴 = 𝑍Σ𝑟𝑍

𝑇 respectively, optimizing Eq. 8 is equivalent to
optimizing Eq. 3 in the dynamics of the FBS algorithm.

Proof. By using FBS algorithm, at iteration 𝑘 , updating 𝐿 in

Eq. 3 and𝑊 in Eq. 8 is to perform

𝐿̂𝑘 = 𝐿𝑘 − 𝜏𝑘 (𝐿𝑘 − 𝐿0), (11)

𝑊̂ 𝑘 =𝑊 𝑘 − 𝜏𝑘 (𝑊 𝑘 −𝑊 0) . (12)

The proximal operator is followed to perform:

𝐿𝑘+1 = 𝑈
𝐿̂𝑘
ℎ𝑘 (Σ𝐿̂𝑘 )𝑉

𝑇

𝐿̂𝑘
, (13)

𝑊 𝑘+1 = 𝑈
𝑊̂ 𝑘ℎ𝑘 (Σ𝑊̂ 𝑘 )𝑉𝑇

𝑊̂ 𝑘
, (14)

where 𝑋 = 𝑈𝑋 diag(𝜎𝑋,1, ..., 𝜎𝑋,𝑛)𝑉𝑇
𝑋

is the singular value decom-

postion of 𝑋 , and 𝑋 = 𝐿̂𝑘 ,𝑊̂ 𝑘
respectively. And ℎ𝑘 (Σ) = max(𝜎𝑖 −

𝜏𝑘 , 0) for each diagonal element 𝜎𝑖 in Σ where 𝜏 is the learning

rate. We will use induction to prove that in each iteration 𝑘 , 𝐿𝑘 =

𝑍𝑊 𝑘𝑍𝑇 .

First we prove that𝑊 𝑘
is a diagonal matrix for any 𝑘 . Obviously

𝑊0 = Σ𝑟 and𝑊1 are diagonal matrices. Suppose that𝑊 𝑘
is a diago-

nal matrix for any 𝑘 . According to Eq. 12, 𝑊̂ 𝑘
is a diagonal matrix.

Therefore,𝑈
𝑊̂𝑘

= 𝑉
𝑊̂𝑘

= 𝐼 where 𝐼 is identity matrix and Σ
𝑊̂𝑘

= 𝑊̂𝑘 .

Hence𝑊 𝑘+1 = ℎ𝑘 (𝑊̂ 𝑘 ) is diagonal for any 𝑘 . Meanwhile, we also

have𝑊 𝑘+1 = ℎ𝑘 (𝑊̂ 𝑘 ) for any 𝑘 .
Then we prove that 𝐿𝑘 = 𝑍𝑊 𝑘𝑍𝑇 for any 𝑘 . Obviously 𝐿0 =

𝑍𝑊 0𝑍𝑇 and 𝐿1 = 𝑍𝑊 1𝑍𝑇 . Suppose that 𝐿𝑘 = 𝑍𝑊 𝑘𝑍𝑇 for any 𝑘 .

According to Eq. 11,

𝐿̂𝑘 = 𝐿𝑘−𝜏𝑘 (𝐿𝑘−𝐿0) = 𝑍 (𝑊 𝑘−𝜏𝑘 (𝑊 𝑘−𝑊 0))𝑍𝑇 = 𝑍𝑊̂ 𝑘𝑍𝑇 . (15)

As𝑊̂ 𝑘
is diagonal, 𝐿̂𝑘 must be symmetric. Then we have Σ

𝐿̂𝑘
= 𝑊̂ 𝑘

.

Therefore, 𝐿𝑘+1 = 𝑈
𝐿̂𝑘
ℎ𝑘 (Σ𝐿̂𝑘 )𝑉

𝑇

𝐿̂𝑘
= 𝑍ℎ𝑘 (𝑊̂ 𝑘 )𝑍𝑇 = 𝑍𝑊 𝑘+1𝑍𝑇 .

Hence the case holds for 𝑘 + 1. The optimization step of Eq. 8 is

equivalent to that of Eq. 3. If Eq. 8 converges to a stationary point,

Eq. 3 would converge to the same point. □

By Thm. 4.2, we prove that, with proper initialization and FBS

algorithm, optimizing Eq. 8 is equivalent to optimizing Eq. 3 when

adjacency matrix 𝐴 has rank 𝑟 . Note that in the real world, the per-

turbed adjacencymatrix𝐴 is not always low-rankwith a small value

of 𝑟 . Hence we in practice choose an appropriate 𝑟 independent of

the true rank of the adjacency matrix 𝐴, and further empirically

demonstrate that Eq. 8 can still acquire robust results even if in this

circumstance.

4.2.2 Robust Low-Rank Matrix Recovery. Although Eq. 8 is

an efficient solution for recovering a low-rank adjacency matrix

𝐿, it is not effective enough to purify the perturbed graph. As de-

picted in Figure 2(d), the distributions of singular values of clean

subgraph and perturbed subgraph are heavily mixed up. With the

increase of perturbation rate, the singular values of the perturbed

subgraph will gradually fill out the entire spectrum. As the classi-

cal nuclear norm minimization treats all singular values equally,

relative large singular values from perturbed subgraph cannot be

effectively detected and removed.

To solve the problem, we propose an RPCA-based approach sepa-

rating the latent perturbations from the perturbed adjacency matrix.

Specifically, we assume the perturbed adjacency matrix 𝐴 can be

decomposed as a low-rank component 𝐿 and a sparse component 𝑆 ,

i.e., 𝐴 = 𝐿 + 𝑆 . In this way, we can isolate the latent perturbations

to 𝑆 and acquire a clean adjacency matrix 𝐿. Consequently, the

objective function can be formulated as

minimize

𝑊,𝑆

1

2

| |𝐴 − 𝑆 − 𝑍𝑊𝑍𝑇 | |2𝐹 + 𝜇 | |𝑊 | |∗ + 𝛼 | |𝑆 | |1, (16)

where 𝑆 ∈ R𝑛×𝑛 is the learned sparse matrix. Here, we use 𝐴 − 𝑆
to replace 𝐴 and add a 𝑙1 norm regularizer for 𝑆 . Since attackers

try to manipulate the input graph with unnoticeable perturbations,

matrix 𝑆 is sparse in nature. In this way, the perturbations or noises

with arbitrary magnitude and distribution can be isolated into 𝑆 .



And we optimize over𝑊 for the low-rank matrix 𝐿 = 𝑍𝑊𝑍𝑇 by

the conclusion of Thm. 4.2.

4.2.3 Final Objective Function. To avoid the suboptimal solu-

tion of GNN model [17], we jointly learn the graph structure with

the GNN task. Specifically, we combine the aforementioned pro-

posal with the downstream task, and the final objective function

is

minimize

𝑊,𝑆,𝜃

1

2

| |𝐴 − 𝑆 − 𝑍𝑊𝑍𝑇 | |2𝐹 + 𝜇 | |𝑊 | |∗ + 𝛼 | |𝑆 | |1

+𝛾L𝐺𝑁𝑁 (𝜃,𝑍𝑊𝑍𝑇 , 𝑋, C𝐿), 𝑠 .𝑡 ., 𝑍𝑊𝑍𝑇 ≥ 0,

(17)

where L𝐺𝑁𝑁 is the loss function of the downstream task, and

C𝐿 is the labeled set for training. In particular, to ensure that the

summation

∑
𝑖 𝐴𝑖 𝑗 and

∑
𝑗 𝐴𝑖 𝑗 for each row 𝑖 and column 𝑗 are

nonnegative for the normalization operation in GNN, we add an

constraint for learned adjacency matrix as 𝑍𝑊𝑍𝑇 ≥ 0.

4.3 Scaling to Large Graphs
Nuclear normminimization still has O(𝑛2) space complexity, which

is unacceptable for large-scale inputs. Hence we apply a relaxation

to LRGNN to make it scalable to large graphs. The algorithm is re-

ferred to as LRGNN(S) as S stands for sampling or sparse. LRGNN(S)

is inspired by the empirical observation that adversarial attacker

prefers to inserting edges rather than deleting edges. According

to the experiment in [18], roughly 80% of meta attack’s perturba-

tions are edge insertions. This indicates that we can alleviate most

attacks even if we only remove existing edges that are potentially

adversarial. Since real-world graph is usually sparse, the search

space can be reduced from 𝑛2 to |E |, where |E | is the number of

edges and |E | ≪ 𝑛2. Hence we propose a new formulation as

minimize

𝑊,𝑆,𝜃

1

2

| |𝑃Ω (𝐴 − 𝑆 − 𝑍𝑊𝑍𝑇 ) | |2𝐹 + 𝜇 | |𝑊 | |∗ + 𝛼 | |𝑃Ω (𝑆) | |1

+𝛾L𝐺𝑁𝑁 (𝜃, 𝑃Ω (𝑍𝑊𝑍𝑇 ), 𝑋, C𝐿), 𝑠 .𝑡 ., 𝑍𝑊𝑍𝑇 ≥ 0,

(18)

where Ω is a subset of {(𝑖, 𝑗) |0 ≤ 𝑖 < 𝑛, 0 ≤ 𝑗 < 𝑛}, and the operator
𝑃Ω : R𝑚×𝑛 → R𝑚×𝑛 is defined as [𝑃Ω (𝐴)] = 𝐴𝑖 𝑗 , if (𝑖, 𝑗) ∈ Ω,
and [𝑃Ω (𝐴)]𝑖 𝑗 = 0 otherwise. This is analogous to the matrix

completion problem where the matrix is partially observed. Unlike

their problem, we split Ω into Ω𝑒 and Ω𝑜 , where Ω𝑒 corresponds to

the existing edges indices and Ω𝑜 denotes the rest. In other words,

we take all non-zero entries in 𝐴, and a part of zero-entry samples

into consideration. Hence we have [𝑃Ω𝑒
(𝐴)] = 1 for (𝑖, 𝑗) ∈ Ω𝑒 ,

and [𝑃Ω𝑜
(𝐴)] = 0 for (𝑖, 𝑗) ∈ Ω𝑜 .

Considering |Ω | ≪ 𝑛2 and the elements for (𝑖, 𝑗) ∉ Ω will not

be updated, we can vectorize the matrices according to Ω. Thus we
express Eq. 18 as

minimize

𝑊,𝑠,𝜃

1

2

| |𝑎 − 𝑠 − 𝑙 | |2
2
+ 𝜇 | |𝑊 | |∗ + 𝛼 | |𝑠 | |1,

+𝛾L𝐺𝑁𝑁 (𝜃, 𝑙, 𝑋,C𝐿) s.t., 𝑙 ≥ 0,

(19)

where 𝑙 ∈ R1×|Ω | , 𝑠 ∈ R1×|Ω | , and 𝑎 ∈ R1×|Ω | are vectorized

𝑃Ω (𝑍𝑊𝑍𝑇 ), 𝑃Ω (𝑆), and 𝑃Ω (𝐴) respectively. Given an injective

mapping function M : Ω → {1, 2, ..., |Ω |} indicating the corre-

sponding index for each pair (𝑖, 𝑗) ∈ Ω, we have 𝑎M((𝑖, 𝑗)) = 𝐴𝑖, 𝑗 if

Algorithm 1 LRGNN

Require: Adjacency matrix 𝐴, Attribute matrix 𝑋 , Labels C𝐿 ,
Hyper-parameters 𝜇, 𝛼 , 𝛾 , 𝑟 , Learning rate 𝜂𝑊 , 𝜂𝑆 , 𝜂𝜃 .

Ensure: Weight matrix𝑊 and 𝑆 , GNN parameters 𝜃

1: Given 𝐴 = 𝑈 Σ𝑉𝑇
, initialize 𝑆0 ← 0, 𝑍 ← 𝑈:,:𝑟 ,𝑊

0 ← 𝑍𝑇𝐴𝑍

2: Randomly initialize 𝜃 ;

3: while Stopping condition is not met do
4: 𝑊̂ 𝑘+1 ←𝑊 𝑘 − 𝜂𝑊 ∇𝑊 L(𝑊 𝑘 , 𝑆𝑘 , 𝜃𝑘 )
5: 𝑊 𝑘+1 ← prox𝜂𝑊 𝜇 | | · | |∗ (𝑊̂

𝑘+1)
6: 𝑆𝑘+1 ← 𝑆𝑘 − 𝜂𝑆∇𝑆 | |𝐴 − 𝑆𝑘 − 𝑍𝑊 𝑘+1𝑍𝑇 | |
7: 𝑆𝑘+1 ← prox𝜂𝑆𝛼 | | · | |1 (𝑆

𝑘+1)
8: 𝑍𝑊 𝑘+1𝑍𝑇 ← 𝑃D (𝑍𝑊 𝑘+1𝑍𝑇 )
9: for i=1 to 𝜏 do
10: 𝑔← 𝜕L𝐺𝑁𝑁 (𝜃𝑘 ,𝑍𝑊 𝑘+1𝑍𝑇 ,𝑋,C𝐿)

𝜕𝜃𝑘

11: 𝜃𝑘+1 ← 𝜃𝑘 − 𝜂𝜃𝑔
12: end for
13: end while
14: return 𝑊 , 𝑆 , 𝜃

(𝑖, 𝑗) ∈ Ω. Each element of 𝑎 equals to the corresponding value in𝐴

byM. Similarly, 𝑙 and 𝑠 are respectively vectorized representation

of 𝑍𝑊𝑍𝑇 and 𝑆 byM. In this way, we can formulate the problem

in a sparse version. Comparing to the original O(𝑛2) space com-

plexity, the space complexity of Eq. 19 is much smaller, depending

on the sample space. In particular, if Ω = Ω𝑒 , the formulation can

be viewed as a low rank attention mechanism as we only modify

the weights of existing edges to minimize the rank of 𝑍𝑊𝑍𝑇 .

4.4 Optimization
In this section we provide the detail of our algorithm for solving

Eq. 17 (LRGNN) and Eq. 19 (LRGNN(S)). Since Eq. 17 and Eq. 19

are very similar, we mainly introduce LRGNN. Overall, joint op-

timization over𝑊 , 𝑆 , and 𝜃 is challenging, and we apply the idea

of Alternating Direction Method of Multipliers (ADMM) [31]. The

key insight of ADMM is to divide the objective into two (or more)

pieces and optimize with respect to one of them at each time while

keeping other pieces fixed. The algorithm is shown in Alg. 1.

We initialize𝑊 , 𝑆 , 𝜃 and 𝑍 in line 1 and line 2. To update𝑊 ,

we fix 𝑆 and 𝜃 , and use FBS algorithm by executing line 4 to line 5

where L(𝑊,𝑆, 𝜃 ) is represented as

L(𝑊,𝑆, 𝜃 ) = 1

2

| |𝐴 − 𝑆 − 𝑍𝑊𝑍𝑇 | |2𝐹 + 𝛾L𝐺𝑁𝑁 (𝜃, 𝑍𝑊𝑍𝑇 , 𝑋, C𝐿) .
(20)

Similarly, we fix𝑊 and 𝜃 , and update 𝑆 by line 6 and line 7. It should

be noted that the proximal operator of 𝑙1 norm and nuclear norm

are

prox𝜂𝜇 | | · | |1 (𝑆) = 𝑠𝑔𝑛(𝑆) ⊙ (|𝑆 | − 𝜂𝛼)+, (21)

prox𝜂𝜇 | | · | |∗ (𝑊 ) = 𝑈𝑑𝑖𝑎𝑔((𝜎𝑖 − 𝜂𝜇)+)𝑖𝑉𝑇 , (22)

where 𝑊 = 𝑈𝑑𝑖𝑎𝑔(𝜎1, ..., 𝜎𝑛)𝑉𝑇
is the singular value decompo-

sition. 𝑠𝑔𝑛(𝑋 ) and (𝑋 )+ are element-wise operation of matrix 𝑋 .

𝑠𝑔𝑛(𝑋𝑖 𝑗 ) = 1, 0,−1 if 𝑋𝑖 𝑗 > 0,= 0, < 0 respectively, and (𝑋𝑖 𝑗 )+ =

𝑚𝑎𝑥{𝑋𝑖 𝑗 , 0}. We let ⊙ denote the Hadamard product of matrices.

To update 𝜃 , we also fix𝑊 and 𝑆 . We project the learned adjacency



matrix 𝑍𝑊𝑍𝑇 to 𝑃D (𝑍𝑊𝑍𝑇 ) with respect to 𝑍𝑊𝑍𝑇 > 0 and up-

date 𝜃 via stochastic gradient descent by iteratively executing line

9 to line 11 for 𝜏 times. By iteratively performing line 3 through

line 13 until the stopping condition is met, we acquire the final𝑊 ,

𝑆 and 𝜃 .

For LRGNN(S), we need to initialize the partially observed matrix

𝐴, 𝐿 and 𝑆 as vectors 𝑎, 𝑙 and 𝑠 according to the mapping function

M where 𝑙M((𝑖, 𝑗)) = 𝑍𝑖𝑊𝑍𝑇
𝑗
,∀(𝑖, 𝑗) ∈ Ω. And other optimization

procedures are similar to Alg. 1.

4.5 Complexity Analysis
We mainly discuss the space and time complexity of our algorithms

excluding the GNN part, as different GNN methods could be inte-

grated with ours.

LRGNN. The space complexity of LRGNN is O(𝑛2). The time com-

plexity of LRGNN is O(𝑛𝑟2 + 𝑛2𝑟 + 𝑟3). Compared to the time

complexity O(𝑛3) for minimizing the rank of 𝐿, LRGNN is much

more computationally efficient.

LRGNN(S). The space complexity of LRGNN(S) is O(|Ω |). The
time complexity of LRGNN(S) is O(|Ω |𝑟2 + 𝑟3).

5 EXPERIMENTS
In this section, we evaluate the effectiveness of LRGNN and LRGNN(S)

against different graph adversarial attacks. In particular, we aim to

answer the following questions:

• RQ1 How do LRGNN and LRGNN(S) compare to the state-of-

the-art defense methods under different adversarial attacks?

• RQ2 Can our proposed method achieve a tradeoff between effec-

tiveness and efficiency?

• RQ3 Can our proposed method decouple the adversarial pertur-

bations from the graph?

• RQ4 How does different components affect the performance of

LRGNN?

• RQ5 Is the initialization of 𝑍 in Thm. 4.2 necessary?

5.1 Experimental settings
5.1.1 Dataset. Following [17, 18, 21], we evaluate LRGNN on four

benchmark datasets Cora [32], Citeseer [33, 34], Polblogs[35], and

Pumbed [34] for semi-supervised node classification. Table 1 gives

the statistics of the largest connected component of each graph.

None of the referenced attacks/defenses [13–18, 21] use a larger

dataset.

5.1.2 Baselines. We compare our approach with the state-of-the-

art defenses [13, 15–17] against structure attacks. RGCN [13] mod-

els the hidden-layer features as Gaussian variables and assigns

fewer weights to nodes with higher variance in aggregating neigh-

bors’ information. GCN-Jaccard [15] uses the Jaccard similarity

on the attributes to eliminate edges connecting dissimilar nodes.

Note that this method only works when node features are available.

GCN-SVD [16] found nettack affects the high-rank part of the graph
spectrum and performed a low-rank approximation of the adjacency

matrix with truncated SVD. Pro-GNN [17] utilizes the sparse nature

of graph and feature smoothness to learn clean graph structure.

Further, we compare robustness to the general-purpose GCN [3],

Table 1: Statistics of the largest connected component of the
used datasets.

Nodes Edges Features Classes

Cora 2485 5069 1433 7

Citeseer 2110 3668 3703 6

Polblogs 1222 16714 / 2

Pubmed 19717 44338 500 3

Graph Attention Network (GAT) [4], and SimP-GCN [14]. Particu-

larly, SimP-GCN fights against adversarial attacks by preserving

feature smoothness between connected nodes. We implement with

the repository DeepRobust [36].

5.1.3 Hyperparameters. We use two-layer GCNs with default pa-

rameters, which are consistent among all models. Following prior

works, we randomly split the nodes of each dataset into three parts

— training set (10%), validation set (10%), and testing set (80%).

For a fair comparison, we use the same splitting rule across all

methods and set the weight decay for all architectures to 5 × 10−4.
And other hyperparameters are tuned based on loss and accuracy

on the validation sets. For RGCN, the number of hidden units

is tuned among {16, 32, 64, 128}. For GCN-Jaccard, the similarity

threshold is chosen from {0.01, 0.02, 0.03, 0.04, 0.05, 0.1}. For GCN-
SVD, we select the truncated rank from {5, 10, 15, 50, 100, 200}. For
other baselines, we adopt the default parameters in their open-

sourced codes. For LRGNN and LRGNN(S), we select 𝑟 of𝑊 from

{50, 100, 200, 300, 400, 500, 1000} for Cora, Citeseer and Polblogs,

and {50, 100, 200} for Pubmed. For LRGNN(S), the number of ob-

served entries are set as 𝑘 |E | where 𝑘 is chosen from {1, 10, 20, 40}
for Cora, Citeseer and Polblogs, and {1, 2, 3, 4, 5, 10} for Pubmed.

5.2 Robustness
We aim to answer the first question. For a fair comparison, we

follow the settings in [17] to evaluate our proposed method on

node classification task against three different types of attacks,

i.e., non-targeted attack, targeted attack and random attack. Non-

targeted attack (metattack) poisons the graph and degrades the

overall performance of GNNs. Targeted attack (nettack) injects
perturbations on graph to attack targeted nodes. Random attack

can be viewed as random noise since it randomly injects edges into

the graph.

We attack the original graphs respectively with the above meth-

ods, and evaluate the node classification performance of all methods

on the attacked graphs.

5.2.1 Against Non-targeted Adversarial Attack. We adoptmetattack
and use its different variants on different datasets. For Cora, Citeseer

and Polblogs, Meta-Self is applied to achieve the most destructive

attacks; while for Pubmed, A-Meta-Self is adopted to save memory

and time. And the perturbation rate of edges is set from 0 to 25%with

a step size of 5%. All the experiments run 10 times, and we report the

average accuracy with standard deviation in Table 2. From the table,

we observe that LRGNN and LRGNN(S) outperform most defense

methods. Specifically, on Cora, LRGNN improves over GCN by

11% at a 15% perturbation rate and is the closest competitor to the

best method. For Citeseer, LRGNN is still comparable to the most



Table 2: Node classification performance (Accuracy±Std) under non-targeted attack (metattack).

Dataset Ptb Rate (%) GCN
†

GAT
†

RGCN
†

GCN-Jaccard
†§

GCN-SVD
†

Pro-GNN
†§

SimP-GCN LRGNN LRGNN(S)

Cora

0 83.50±0.44 83.97±0.65 83.09±0.44 82.05±0.51 80.63±0.45 82.98±0.23 83.69±0.45 83.42±0.30 84.10±0.48
5 76.55±0.79 80.44±0.74 77.42±0.39 79.13±0.59 78.39±0.54 82.27±0.45 79.03±1.22 80.90±0.84 79.05±1.00
10 70.39±1.28 75.61±0.59 72.22±0.38 75.16±0.76 71.47±0.83 79.03±0.59 75.74±1.66 77.47±0.87 75.43±1.56
15 65.10±0.71 69.78±1.28 66.82±0.39 71.03±0.64 66.69±1.18 76.40±1.27 72.65±2.94 76.73±0.58 72.60±1.73
20 59.56±2.72 59.94±0.92 59.27±0.37 65.71±0.89 58.94±1.13 73.32±1.56 70.11±6.39 72.86±0.93 70.26±1.02
25 47.53±1.96 54.78±0.74 50.51±0.78 60.82±1.08 52.06±1.19 69.72±1.69 66.41±7.36 70.11±1.00 66.40±2.66

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 72.10±0.63 70.65±0.32 73.28±0.69 74.25±0.66 73.13±0.33 71.88±0.50
5 70.88±0.62 72.89±0.83 70.50±0.43 70.51±0.97 68.84±0.72 72.93±0.57 73.67±0.63 72.78±0.58 68.29±0.82
10 67.55±0.89 70.63±0.48 67.71±0.30 69.54±0.56 68.87±0.62 72.51±0.75 73.07±1.37 72.11±1.23 67.24±0.74
15 64.52±1.11 69.02±1.09 65.69±0.37 65.95±0.94 63.26±0.96 72.03±1.11 73.09±1.46 71.18±0.60 65.84±0.86
20 62.03±3.49 61.04±1.52 62.49±1.22 59.30±1.40 58.55±1.09 70.02±2.28 70.08±3.55 66.11±0.76 64.01±0.75
25 56.94±2.09 61.85±1.12 55.35±0.66 59.89±1.47 57.18±1.87 68.95±2.78 71.30±2.45 63.60±0.60 63.25±1.10

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 - 95.31±0.18 - 95.81±0.40 94.50±0.23 95.33±0.39
5 73.07±0.80 83.69±1.45 74.34±0.19 - 89.09±0.22 - 72.97±2.20 93.33±0.33 92.41±1.36
10 70.72±1.13 76.32±0.85 71.04±0.34 - 81.24±0.49 - 72.40±2.51 88.15±0.66 89.96±0.85
15 64.96±1.91 68.80±1.14 67.28±0.38 - 68.10±3.73 - 67.54±2.92 86.22±1.38 90.72±1.22
20 51.27±1.23 51.50±1.63 59.89±0.34 - 57.33±3.15 - 57.33±3.49 83.39±0.61 87.45±0.95
25 49.23±1.36 51.19±1.49 56.02±0.56 - 48.66±9.93 - 56.40±2.87 75.53±1.06 85.27±1.80

Pubmed

0 87.19±0.09 83.73±0.40 86.16±0.18 87.06±0.06 83.44±0.21 87.26±0.23 87.45±0.16 83.41±0.10 86.45±0.10
5 83.09±0.13 78.00±0.44 81.08±0.20 86.39±0.06 83.41±0.15 87.23±0.13 86.33±0.23 83.35±0.01 86.43±0.12
10 81.21±0.09 74.93±0.38 77.51±0.27 85.70±0.07 83.27±0.21 87.21±0.13 85.73±0.28 83.17±0.09 86.32±0.14
15 78.66±0.12 71.13±0.51 73.91±0.25 84.76±0.08 83.10±0.18 87.20±0.15 85.43±0.30 82.85±0.12 86.24±0.11
20 77.35±0.19 68.21±0.96 71.18±0.31 83.88±0.05 83.01±0.22 87.15±0.15 85.27±0.32 82.50±0.12 86.19±0.12
25 75.50±0.17 65.41±0.77 67.95±0.15 83.66±0.06 82.72±0.18 86.76±0.19 85.20±0.33 81.64±0.21 86.04±0.11

†
indicates that the results were taken from [17].

§
GCN-jaccard and Pro-GNN cannot be directly applied to datasets without node features.
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Figure 4: The defense performance against targeted attack (nettack).
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Figure 5: The defense performance against random attack.

effective method when the perturbation ratio is no more than 15%.

For Polblogs, LRGNN(S) consistently outperforms other methods

under different perturbation rates and improves over vanilla GCN

by 36%. In particular, it outperforms other defense methods by

29% at the perturbation rate of 25%. For Pubmed, LRGNN(S) is still

competitive with no more than 1% accuracy difference to the most

effective method.

As for LRGNN and LRGNN(S), we find that LRGNN(S) consis-

tently outperforms LRGNN on large datasets. This may be because

eliminating adversarial attacks on existing edges is more effective

on large graphs.



Table 3: GPU memory consumption (/MB) on Cora and Pubmed for all defenses.

Baseline RGCN GCN-Jaccard GCN-SVD Pro-GNN SimP-GCN LRGNN LRGNN(S)

Cora 2090 1696 1720 2530 2050 2030 1970

Pubmed 11032 1746 3204 29290 8024 22788 2508
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Figure 6: Training time (upper) and total time (bottom).

5.2.2 Against Targeted Adversarial Attack. In this experiment, net-
tack is adopted to attack the targeted nodes as we use the default

parameter settings in [21]. Following [13, 17], we vary the per-

turbation number of each targeted node from 1 to 5 with a step

size of 1. Nodes with degrees larger than 10 in the testing set are

chosen as targeted nodes. Only 10% of those nodes are used in

Pubmed while other datasets use all as targeted nodes. The classifi-

cation performance is displayed in Figure 4. We can see that our

proposed methods consistently surpass most baselines. In particu-

lar, LRGNN(S) has stable performance against targeted attacks on

Pubmed. With the increase of the perturbation number, LRGNN(S)

improves over GCN by 24% and over other baselines by 10% under

5 perturbations per targeted node.

5.2.3 Against Random Attack. In this experiment, we study how

well LRGNN and LRGNN(S) perform against random noise. We set

the perturbation rate from 0 to 100% with a step size of 20%. As

shown in Figure 5, the result shows that LRGNN and LRGNN(S)

consistently outperform most baselines and successfully defend the

random attack. Moreover, LRGNN(S) is quite stable in the face of

random attacks on Pubmed.

In conclusion, LRGNN and LRGNN(S) can defend against various

types of adversarial attacks, while LRGNN(S) has a more stable

performance on large datasets under different perturbation rates.

5.3 Efficiency and Scalability Analysis
To analyze the efficiency and scalability of the proposedmethod and

answer the second question, we show the time cost and memory

consumption of all defenses on Cora and Pubmed, respectively.

All experiments are done on an NVIDIA A100 GPU and train for

epochs recorded in their implementations with a patience of 300.

For LRGNN(S), we set 𝑘 = 60 and 𝑘 = 1 for Cora and Pubmed

respectively, as chosen by grid search. In Figure 6, we can observe

that the training time of LRGNN is 10x faster than Pro-GNN while

acquiring similar defense performance and is comparable to other

baselines. Meanwhile, the training time of LRGNN(S) is 100x faster

than Pro-GNN on Pubmed with similar robustness performance.

As for the total time, LRGNN(S) and GCN-SVD are much slower

than their training time due to the singular value decomposition

in preprocessing, but LRGNN(S) is still much faster than other

baselines.

Moreover, we record the memory consumption of all methods

in Table 3. We can see that LRGNN has a similar memory cost with

Pro-GNN as they both directly optimize on the adjacency matrix.

For GCN-Jaccard, its memory consumption is close to GCN as their

difference mainly lies in the preprocessing where dissimilar edges

are deleted. Since singular value decomposition depends on the full

adjacency matrix, GCN-SVD has a higher memory cost than GCN-

Jaccard. For RGCN and SimP-GCN, their memory footprints are also

large on Pubmed. By contrast, LRGNN(S) only requires one-tenth

memory consumption of Pro-GNN on Pubmed, as LRGNN(S) learns

the low-rank matrix with partial observations of the adjacency

matrix. Hence LRGNN(S) is highly scalable to large inputs.

5.4 Decoupling Analysis
In previous sections, we have demonstrated that the proposed

method can effectively fight against various types of attacks ef-

ficiently. In this section, we aim to understand the capability of the

sparse component 𝑆 and answer the third question.

5.4.1 Normal Edges Against Adversarial Edges. To decouple the

clean subgraph 𝐶 and the perturbed subgraph 𝑃 , the sparse matrix

𝑆 should absorb perturbations in 𝑃 in the optimization. Meanwhile,

most adversarial attacks are edge insertion according to the experi-

ment in [18]. Thus, we investigate the difference in weights between

normal and adversarial edges in the learned low-rank adjacency

matrix 𝐿 and the sparse component 𝑆 .

We depict the weight density distribution of normal and adver-

sarial edges for 𝐿 and 𝑆 in Figure 7. The X axis represents the weight

of edges in 𝐿 or 𝑆 as Y axis represents the KDE density of the num-

ber of edges within a specified range of weights. Due to the limit

of space, we only show the results on Polblogs for LRGNN and

Pubmed for LRGNN(S) under metattack with a 15% perturbation

rate. According to the results, we can see that the proposed method

can learn a clean low-rank adjacency matrix 𝐿, where the weights

of adversarial edges are significantly reduced and can be clearly

distinguished from the normal edges. Meanwhile, the weights of

adversarial edges are indeed isolated into the sparse component

𝑆 as the weights of adversarial edges are mostly larger than those

of normal edges. Hence it demonstrates that the proposed method



Table 4: Classification performance with or without component 𝑆 on Cora dataset.

Ptb Rate (%) 0 5 10 15 20 25

w/o S 83.25±0.21 80.03±0.72 75.97±1.02 74.60±0.25 68.77±0.25 67.96±1.32
w/ S 83.42±0.30 80.90±0.95 77.47±0.87 76.73±0.58 72.86±0.93 70.11±1.00

0.0 0.2 0.4 0.6 0.8 1.0
Weights in Low-rank Matrix

0

20

40

60

80

100

120

140

160

KD
E 

De
ns

ity

Normal Edges
Adversarial Edges

(a) Polblogs

0.0 0.1 0.2 0.3 0.4
Weights in Sparse Matrix

0

5

10

15

20

KD
E 

De
ns

ity

Normal Edges
Adversarial Edges

(b) Polblogs

0.0 0.2 0.4 0.6 0.8 1.0
Weights in Low-rank Matrix

0

5

10

15

20

25

30

KD
E 

De
ns

ity

Normal Edges
Adversarial Edges

(c) Pubmed

0 0.1 0.2 0.3
Weights in Sparse Matrix / ×10 3

0

10

20

30

40

50

60

70

80

KD
E 

De
ns

ity

Normal Edges
Adversarial Edges

(d) Pubmed

Figure 7: Weight density distributions of normal and adver-
sarial edges on 𝐿 and 𝑆 .

can decouple 𝑃 and 𝐶 by separating the perturbed edges from the

normal ones.

5.4.2 Performance With/Without Sparse Component. To further

demonstrate the effectiveness of the sparse component 𝑆 , we record

the classification performance againstmetattack on the Cora dataset
with and without 𝑆 . If the model does not have the sparse com-

ponent, we will remove 𝑆 from the objective function, and only

optimize over𝑊 and 𝜃 . Under this circumstance, LRGNN optimizes

on a classical matrix rank minimization problem. We report the

performance in Table 4. As shown in the table, we observe that the

performance of LRGNN with 𝑆 is consistently better than those

without 𝑆 . Meanwhile, the gap gradually enlarges with the increase

of the perturbation rate. This may be because the perturbations are

no longer unnoticeable, and no longer remain as higher-rank com-

ponents when the perturbation rate is high. Hence in our method,

𝑆 can absorb larger perturbations to make the normal edges distin-

guishable from the adversarial ones, leading to more robust matrix

rank minimization.

5.5 Ablation Study
We evaluate different components of LRGNN and answer the fourth

question. According to predefined hyperparameters 𝜇,𝛼 and𝛾 in the

objective function, we can transform the model into three different

variants, i.e., LRGNN-𝜇, LRGNN-𝛼 and LRGNN-𝛾 . For each variant,

we set other predefined hyperparameters to 0. Meanwhile, we use

grid search to choose the best parameters for each variant. The
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Figure 8: Ablation study on different datasets.

0 5% 10% 15% 20% 25%
Perturbation Rate(%)

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Our Col Orthogonal Random GCN

Figure 9: Comparision on different initialization methods.

best results are recorded in Figure 8. We can tell that, the low-

rank component is the most effective part of LRGNN as LRGNN-

𝜇 dramatically outperforms other variants. The performance of

LRGNN-𝛼 and LRGNN-𝛾 are very close, meaning that the sparse

component 𝑆 alone cannot effectively decouple the perturbations

without the low-rank part, suggesting that posing a regularizer

over the adjacency matrix does not work.

5.6 Initialization Analysis
Appropriate initialization of 𝑍 is important in our proposed method

as we hope to get close to the condition of Thm. 4.2 as much as

possible. Hence we study how different initialization methods affect

the overall performance to answer the fifth question. Specifically,

we utilize three different ways to initialize 𝑍 for LRGNN, i.e., our

initialization, column orthogonalization and random initialization.

The best 𝑟 is selected by grid search and independent of the rank

of 𝐴. For ours, we set 𝑍 as the top-𝑟 left singular vectors of the

perturbed adjacency matrix 𝐴 by Thm. 4.2. For column orthogonal-

ization, we choose 𝑍 that 𝑍𝑇𝑍 = 𝐼𝑟×𝑟 . For random initialization,

we randomly generate a 𝑛 × 𝑟 matrix as 𝑍 following the Gaussian

distribution. All experiments are conducted on Cora withmetattack.
The results are shown in Figure 9. We can observe that LRGNN

initialized with our method excels all other methods. This may be

because column orthogonalization satisfies 𝑍𝑇𝑍 = 𝐼𝑟×𝑟 but violates
𝑍𝑇𝐴𝑍 = Σ𝑟 , it can fight against metattack only when perturbation

rate is more than 20%. As for random initialization, it is consistently



weaker than the other two methods. Observations from Figure 9

demonstrate that appropriate initialization is crucial in our pro-

posed method, and empirically prove that ours acquires robust

defense performance even if 𝐴 is not rank 𝑟 .

6 CONCLUSION
Graph neural networks are vulnerable to adversarial attacks as

demonstrated in recent studies. Previous methods either fail to

obtain robustness, or is of high complexity. To speed up robust

structure learning, we propose a novel framework LRGNN and

its scalable variant LRGNN(S) with fast and robust matrix rank

minimization. A range of experiments sufficiently demonstrates

the effectiveness and efficiency of our proposed method. Most im-

portantly, LRGNN(S) achieves similar robustness performance to

the best baseline on Pubmed, a large-scale dataset, in defending

against metattack. But it is 100× faster than the previous method

and is 12×memory-saving. Future directions include extending our

framework to directed graphs and incorporating node attributes

further.

7 ACKNOWLEDGMENTS
This work was partially supported by National Key R&D Program of

China (No.2018AAA0101202), NSF China under Grant (No.61902245,

62032020, 61960206002, 42050105, 61829201), and the Science and

Technology Innovation Program of Shanghai (No.19YF1424500).

REFERENCES
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-

works and locally connected networks on graphs. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
3837–3845, 2016.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-

volutional networks. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[4] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018.

[5] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. Graph convolutional neural networks for web-scale recom-

mender systems. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 974–983, 2018.

[6] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph con-

volutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[7] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convo-

lutional neural networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1539–1548, 2019.

[8] Bin Lu, Xiaoying Gan, Haiming Jin, Luoyi Fu, and Haisong Zhang. Spatiotemporal

adaptive gated graph convolution network for urban traffic flow forecasting. In

Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1025–1034, 2020.

[9] Yangtao Wang, Yanzhao Xie, Yu Liu, Ke Zhou, and Xiaocui Li. Fast graph convo-

lution network based multi-label image recognition via cross-modal fusion. In

Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 1575–1584, 2020.

[10] Chenghu Zhou, Hua Wang, Chengshan Wang, Zengqian Hou, Zhiming Zheng,

Shuzhong Shen, Qiuming Cheng, Zhiqiang Feng, Xinbing Wang, Hairong Lv,

et al. Prospects for the research on geoscience knowledge graph in the big data

era. Science China Earth Sciences, pages 1–11, 2021.

[11] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He, and

Bo Li. Adversarial attack and defense on graph data: A survey. arXiv preprint
arXiv:1812.10528, 2018.

[12] Wei Jin, Yaxin Li, Han Xu, Yiqi Wang, and Jiliang Tang. Adversarial attacks and

defenses on graphs: A review and empirical study. arXiv preprint arXiv:2003.00653,
2020.

[13] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convo-

lutional networks against adversarial attacks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1399–1407, 2019.

[14] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node

similarity preserving graph convolutional networks. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining, pages 148–156,
2021.

[15] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming

Zhu. Adversarial examples on graph data: Deep insights into attack and defense.

arXiv preprint arXiv:1903.01610, 2019.
[16] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E

Papalexakis. All you need is low (rank) defending against adversarial attacks on

graphs. In Proceedings of the 13th International Conference on Web Search and
Data Mining, pages 169–177, 2020.

[17] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

Graph structure learning for robust graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 66–74, 2020.

[18] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neu-

ral networks via meta learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[19] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal

component analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.
[20] Namrata Vaswani and Praneeth Narayanamurthy. Static and dynamic robust

pca and matrix completion: A review. Proceedings of the IEEE, 106(8):1359–1379,
2018.

[21] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks

on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 2847–
2856, 2018.

[22] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Ad-

versarial attack on graph structured data. In International conference on machine
learning, pages 1115–1124. PMLR, 2018.

[23] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-WeiWeng,Mingyi Hong, and

Xue Lin. Topology attack and defense for graph neural networks: An optimization

perspective. In IJCAI, pages 3961–3967. ijcai.org, 2019.
[24] ShiqianMa, Donald Goldfarb, and Lifeng Chen. Fixed point and bregman iterative

methods for matrix rank minimization. Mathematical Programming, 128(1):321–
353, 2011.

[25] Karthik Mohan and Maryam Fazel. Iterative reweighted algorithms for matrix

rank minimization. The Journal of Machine Learning Research, 13(1):3441–3473,
2012.

[26] Zihan Zhou, Xiaodong Li, John Wright, Emmanuel Candes, and Yi Ma. Stable

principal component pursuit. In 2010 IEEE international symposium on information
theory, pages 1518–1522. IEEE, 2010.

[27] Shiqian Ma and Necdet Serhat Aybat. Efficient optimization algorithms for

robust principal component analysis and its variants. Proceedings of the IEEE,
106(8):1411–1426, 2018.

[28] Luong Trung Nguyen, Junhan Kim, and Byonghyo Shim. Low-rank matrix

completion: A contemporary survey. IEEE Access, 7:94215–94237, 2019.
[29] Emmanuel J Candes and Yaniv Plan. Matrix completion with noise. Proceedings

of the IEEE, 98(6):925–936, 2010.
[30] Tom Goldstein, Christoph Studer, and Richard G. Baraniuk. A field guide to

forward-backward splitting with a FASTA implementation. CoRR, abs/1411.3406,
2014.

[31] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[32] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

Automating the construction of internet portals with machine learning. Informa-
tion Retrieval, 3(2):127–163, 2000.

[33] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic

citation indexing system. In Proceedings of the third ACM conference on Digital
libraries, pages 89–98, 1998.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[35] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us

election: divided they blog. In Proceedings of the 3rd international workshop on
Link discovery, pages 36–43, 2005.

[36] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for

adversarial attacks and defenses. arXiv preprint arXiv:2005.06149, 2020.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Adversarial Attacks On Graphs
	2.2 Robust Graph Learning

	3 Preliminaries
	3.1 Matrix Rank Minimization
	3.2 Matrix Completion

	4 The Proposed Framework
	4.1 Problem Statement
	4.2 Speed Up Robust Graph Structure Learning
	4.3 Scaling to Large Graphs
	4.4 Optimization
	4.5 Complexity Analysis

	5 Experiments
	5.1 Experimental settings
	5.2 Robustness
	5.3 Efficiency and Scalability Analysis
	5.4 Decoupling Analysis
	5.5 Ablation Study
	5.6 Initialization Analysis

	6 Conclusion
	7 Acknowledgments
	References

